Lab 8 — Exploring the Operation of a 2-Read, 1-Write Memory
for use in a Basic Processor

Introduction

As described in the class, a 2-read, 1-write random access memory is the basic building block for
the registers inside microprocessors. In this lab you will be instantiating a small 8-word deep by
4-bit (0-F) wide memory.

Most standard memories are single port, i.e., they have a single address bus that selects the input
data path and the output data path. The next level is dual port, 1-read, 1-write memories. These
have independent address and control signals for the read side and the write side of the memory
cells. In this lab you will be exploring the operation of a 2-read, 1-write memory device. It has
three separate address buses to access the same internal memory cells: one for writing, and two
for reading. Thus, one can read two different words or memory locations simultaneously. Here
we separate memory locations into two memory banks (one reads system memory and other one
reads user memory).

In the implementation, you will be controlling the read and write operations as well as displaying
the memory contents by selecting various combinations of switches and push buttons on your
DE10-Lite board.

Detailed Specification:

A block diagram for the top module, memory_display, is illustrated below. Note there are 6 input
signals/busses:

a) the clock (clk),

b) the reset signal (rst) (connected to the pushbutton keyO0),

c) switches (sw[4:0] where s[4:2] is system memory addresses when s[4] is high, and {s[4],
s[1:0]} is user addresses when s[4] is low. i.e. memory locations 0-3 is for user memory
and 4-7 is system memory),

d) a memory write signal (m_write) (connected to the pushbutton key1),
e) a write enable signal (w_ena) (connected to switch 5),
f) a data write bus (w_data) (connected to switches 6-9).

There are five output signals:

a) anode and cathode to drive the seven segment displays,
b) rs_data and ru_data which are the two read ports from the memory.

From the block diagram, map out the functional operation of the design for the switch
combinations. Compare to the functionality described in the Functional Table below it. This will

1 11/8/2018

provide you with an operating template when your design is implemented in hardware. Verify
that it matches the block diagram. Note that the write functionality and the information on

display digits 4 and 5 are determined by switch 5 (connected to w_ena).

sw[9:6]

~key1

~key0

bed_in

display_on

svn_seg_decoder
bed_in
seg_out

display_on

svn_seg decoder
bed in

seg out
display_on

svn_seg_decoder
bed_in

seg_out

display_on

11/8/2018

Functional Table

Function: reset

reset

‘ center pushbutton (rst input signal in memory_display)

Function: write data to memory

Inputs:

Select write function

keyl — on (w_ena input signal in memory_display) and switch 5
on

Write address

3-bits: switches [4,3,2] or switches [4,1,0]

Write data

4-bits: switches 9-6 (w_data input signal in memory_display)

Command: write data to address

Down key1 pushbutton (m_write input signal in memory_display)

Outputs:
Digit 4 3-bits: hexadecimal, address to write to (switches 4,1,0)
Digit 5 4-bits: hexadecimal
Function: read data from memory
Inputs:

Select read function

keyl — off (w_ena input signal in memory_display)

Read address, port u

3-bits: switches 4,1,0

Read address, port s

3-bits: switches 4,3,2

Outputs:
Digit 0 3-bits: hexadecimal, address user memory
Digit 1 4-bits: hexadecimal, data read from address user memory
Digit 2 3-bits: hexadecimal, address system memory
Digit 3 4-bits: hexadecimal, data read from address system memory

3 11/8/2018

Design

You will be using modules/files from your past labs/designs: display driver, svn_seg decoder,
and anode_decoder. These will be linked automatically for you in the simulation and synthesis
command scripts.

You will be provided the 2-read, 1-write memory module design: rf 8x4 2rlw.

A skeleton file is provided for the module shown in the block diagram: memory display. This is
the only module that you need to design. The design basically involves:

* instantiating the memory,

* instantiating the display driver,

» creating the AND gate and a multiplexer (I recommend an assign statement and a
combinational always block),

* and connecting all the signals.

Simulation/Verification
In the simulation view, there is one self checking test bench wrapper for the above module:

tb_memory_display.sv. This file will read the test vectors from tb_memory_display.txt. Neither
of these two files should be edited.

Verification step:
[l memory_display.m _sim is used to simulate the memory_display module.

The test bench has 10 test vectors that transition based on a change of the anode signals. Each set
of 4 vectors are monitoring the anode and cathode signals so as to monitor the values presented
to each digit. The first 32 test vectors write to the 8-words of memory. In particular the address-
data combinations are (in hexadecimal): 0-F, 1-D, 2-B, 3-9, 4-7, 5-5, 6-3, 7-1. The final 16 test
vectors read the 8-words of memory, 2 words at a time.

The output from a successful simulation will be:

Match--loop index i: 0
Match--loop index i: 1
Match--loop index i: 2...
Match--loop index i: 9

Simulation complete - no mismatches!!!
If you have mismatches, the expected anode and cathode values are displayed, compared to their

simulated values. To determine the input switch settings you will have to observe the timing
diagram at the appropriate value of the index i. An example mismatch message could be:

4 11/8/2018

Match--loop index 1i: 17 Mismatch--loop index i: 18; anode, cathode

[expected:

1011 1000000 0, received: 1011 0011001 4 X

Match--loop index 1i: 19 / \ \
anode cathode decoded cathode

In this example the decoded cathode is the digit that would be displayed on the seven segment
decoder based on the cathode pattern.

Correct your mismatches before you implement the design in hardware.

Synthesis
Generate a bit file as you did in past labs (right click and Run on: 1ab8 top.qsf). For this lab it will
be called: lab8 top.sof. Copy it to your sof file to load and run it on your DE10-Lite board.

Implementation

Using the Functional Table shown previously, select the switches and push buttons to enable the
required operations. In particular, test your design by writing to the 8-words some random 4-bit
numbers of your choosing, i.e., part of your TUID, part of your phone number, etc. Complete the
table below with the data. Then select the read mode and see that you can read back all of the
stored data — and notice how you can read two different locations simultaneously.

Memory Address Data

N | B W | = O

7

The ability to read two different locations simultaneously in a single memory is a subtle but
important concept to understand the low level details of how a basic processor works.

5 11/8/2018

