Lab 7 — Robust Rotary Encoder Design
Parts A and B

Introduction

Often when working with designs that require some type of position or rotation sensing, an
electro-mechanical device called an encoder is used. It may either encode linear position (linear
encoder) or rotation (rotary encoder). In this lab you will be introduced to the latter, a rotary
encoder: a device where using the proper electrical interface you can determine the rotation
angle of a shaft. A few example applications are: a) an interface between a motor and a control
circuit to provide information to control the speed of the motor; b) a volume or tuner control on

a digital audio system.

The goal of this design is to use the encoder signals as inputs to a counter. We will count up or
down based on the direction of the rotation. The four digit display will show the counter
outputs. A high level block diagram is shown below.

Electromechanical :> Your_Lab :> 4-Digit Display
Rotary Encoder Design

This lab will be divided into two parts. In part A you will design the encoder datapath. In part B
you will design the controller or Finite State Machine for the design.

There are many technical documents and videos on the web describing the operation of a rotary
encoder. Here is one you should review before continuing these instructions:

https://www.youtube.com/watch?v=zzHcsJDV3 o&feature=emb logo

This video demonstrates optical components as the sensing elements. We will be using a device
that has mechanical contacts as the sensing elements — but the ideas are the same. Note in the
second half of this video the device has two output channels: A and B. These are out of phase by
90 degrees and thus are also known as quadrature outputs (out of phase by a quarter of a
revolution).

For this lab I will call these two quadrature signals: ¢ _a and ¢_b. There are a few things of
interest with such signals:

e When rotating the shaft, direction @ will have a two-bit sequence {q_a,q_b} of:
2'b00, 2'b01, 2'b11, 2'b10, 2'b00, 2'b01, 2'b11, 2'b10, 2'b00, ...

1 8/14/2022

https://www.youtube.com/watch?v=zzHcsJDV3_o&feature=emb_logo

e When rotating the shaft, direction b will have a two-bit sequence {q_a,q b} of:
2'b00, 2'b10, 2'b11, 2'b01, 2'b00, 2'b10, 2'b11, 2'b01, 2'b00, ...
e Note the sequences opposite each other as per each rotation direction.
e The sequence is a 2-bit gray code — i.e., only one bit in the sequence changes.
e In order to determine the direction of rotation, we need to store the previous 2-bit code.
o We will use D-ff's to store the previous code.
o Because the signals will be asynchronous with the clocks driving the D-{f's, there
will often be setup and hold violations.
o To take care of these violations, we will use two D-ff's back to back as
synchronizers.
e We do not need to debounce the inputs, as if there is some contact or debounce noise
from a mechanical switch, the design of the circuit will take care of it (another advantage
of using gray code).

Detailed Specification:
Let's look at a block diagram that incorporates these synchronizing and storage ideas for the
input quadrature signals.

re-coder
(see truth
table)

Synchronizers Currentqg’s Previous g’s

2 8/14/2022

We have the two quadrature inputs (¢_a and ¢ _b) and a system clock (clk) as inputs. For each

quadrature input, we have two D-ff's back to back as synchronizers, followed by two D-{f's to

store the current (q_now) and previous state (q_prev) of these signals. The importance of these

signals is that now they are synchronized to our system clock.

Now, how should we to process these quadrature signals? Let's map out all of the possibilities of

these four signals (¢_prev_a, q_prev_b, ¢ now_a, ¢ _now_b) in the truth table below.

You can see they have been separated into four functional patterns:

e Hold (previous are equal to the current pattern)

e Count up (previous to current follows one gray pattern)

e Count down (previous to current follows the reverse gray pattern)

e Error (previous to current are illegal transitions — two bits transitioning)

q prev.a | q prevb | q now a | q now b quad_ctl function
0 0 0 0
0 1 0 1 ,
1 0 1 0 2'b00 Hold
1 1 1 1
0 0 0 1
0 1 1 1
2'b01
1 0 0 0 b0 Count up
1 1 1 0
0 0 1 0
0 1 0 0
2'bl
1 0 1 1 b10 Count down
1 1 0 1
0 0 1 1
0 1 1 0
2'bl1 E
I 0 0 I b rror
1 1 0 0

The 2-bit output quad_ctl signal reflects these four possible conditions. Is this design encoding

or decoding? 1 call it re-coding, since it takes an encoded signal and codes it into another code

(quad_ctl) — or re-codes it. In the previous block diagram the combinational block called re-code

provides this functionality. The top level re-coder module incorporating all of these

specifications is called: rot_enc_rec.

8/14/2022

Now that we've covered the rotary encoder input flow, let's look at the design from the top
level to create the functionality defined in the introduction. I call this top level block:
rotatation_counter, shown in the diagram below.

rot_enc_rec - up_down_count_dp display_driver

cathode

! t t f

Rotary Encoder

Re-coder Controller Datapath (from prev. lab)

The input signals are the two quadrature signals (¢_a, g_b), the clock (clk) and a reset (rs?)
signal. The outputs are the cathode (cathode) and anode (anode) signals that drive the four
digit display hardware. On the right you can see the instance of the display driver that contains
the seven-segment decoder and anode decoder you designed in a previous lab. An error signal
(error) will also be connected to an LED. On the left side of the figure, you see the rotary re-
coder instance discussed previously.

The other two components are a datapath and a controller. The controller (rc_fsm) is a finite
state machine (FSM) that will be discussed in detail later. It basically takes the quad_ctl
signals as inputs and provides two control output signals (enable, up_down) to the counter
datapath (up_down_count dp). The counter datapath contains a four decimal digit up down
counter. Let's discuss this module next.

Inside this datapath we need four binary coded decimal digits. A block diagram below shows a
block diagram of one of these digits, called up_down_bcd_counter. The specifications for the
combinational logic are summarized in the table below. Note it counts up/down and rolls over
at the nine/zero transitions.

4 8/14/2022

rst | carry in | up down bed next bed carry out | Function
1 X X X 4'd0 X Reset

0 0 X 4'd0 to 9 hold bed 0 Hold

0 1 1 4'd0 to 8 bed + 1 0 Count up
0 1 1 4'd9 4'd10 1

0 1 0 4'dl to 9 bed - 1 0 Count
0 1 0 4'd0 4'd9 1 down

The up down count datapath module (up_down_count_dp) is relatively straightforward. We
need one instance for each digit with the carry outs connected to the carry ins. (Counting down
these become borrow outs/ins.) The up down, reset and clock signals are each wired together.
These details are illustrated in the block diagram below.

up_down_bcd_counter up_down_bcd_counter up_down_bcd_counter up_down_bcd_counter

up_down

carry_out

5 8/14/2022

Finally, we cover the specification for the rotation counter fsm module (rc_fsm). You can see
its top level definition from its instantiation in the block diagram for rotation_counter. There
are three input signals (clk, rst and quad_ctl) and four output signals (error, enable and

up _down). Their functionalities are defined in the following state diagram.

quad_ctl = 2'b00 (hold forever,

. until reset)
HOLD

enable =0, error=0,
up_down = don’t care

rst

quad_ctl =2'b11

ERROR

enable =0, error=1,
up_down = don’t care

quad_ctl = 2'b11

quad_ctl =2'b10 quad_ctl =2'b11
quad_ctl = 2'b01 quad_ctl = 2'b00

quad_ctl = 2'b00

quad_ctl =2'b10

uP

enable =1, error=0,
up_down =1

DOWN

enable =1, error=0,

up_down =0 '

quad_ctl = 2'b01 quad_ctl = 2601 quad_ctl =2'b10

Note the four states that are controlled by the input signals quad_ctl. Each state then controls the
control output signals (error, enable, and up down). Also note that to leave any state, all of the
possible combinations of quad _ctl are defined. Finally, if you reach the ERROR state, there is
no escape except for resetting.

Part A — Datapath

Design Steps

The rotary encoder re-coder (rot_enc_rec) module will be already provided to you in your
design path. Review it and compare it to the block diagram and truth table provided in the
specification section. Note the input flip-flop strings to synchronize and store the quadrature
signals. Also note the re-coder combinational logic defined in the truth table, implemented as a
case statement.

You need to complete the design of two modules:

6 8/14/2022

e up down BCD counter (module up_down_bcd_counter)
Open the file: up_down_bcd_counter.sv and compete the design as per the
specifications in the previous section. This is a single digit binary coded decimal counter
that counts up or down from 0 to 9.

e up down count datapath (module up down_count dp)
Open the file up_down_count_dp.sv and complete the design as per the specifications
in the previous section. You will be instantiating four of the bcd counters so that this
datapath counts up or down from 0000 to 9999 in decimal.

Simulation/Verification

There is only one testbench for Part A, tb_up _down_count_dp.sv. You will be testing both
modules with this testbench. The testbench reads the text file, tb_up _down_count_dp.txt and
applies these test vectors in the sequence shown — one line per clock cycle. If you have
mismatches, they should help you identify your error. It could be either in your counter or
datapath where you are connecting the counters together. Remember, you can use gtkwave to see
all of the signals from the simulation.

Synthesis

There is no synthesis for Part A. Just be sure your simulation passed without errors as these
blocks will be used for Part B.

Part B — Controller

Design Steps

You need to complete the design of the rotation counter finite state machine (re¢_fsm.sv). A
skeleton module will be provided to you. You should follow the recipe for FSM design
described in the class videos and summarized in an Appendix (Controller Design Process) at the
end of this document.

Part of the rotation counter (rotation_counter) module will be already provided to you in your
design path. You need to edit rotation_counter.sv. Instantiate and connect your datapath
(up_down_count_dp) and FSM (rc_fsm) modules as per the block diagram of the rotation
counter shown previously in this document. The other two modules (rot_enc_rec and

display driver) will already be instantiated.

7 8/14/2022

Simulation/Verification

There are two testbenches for Part B. The first testbench tests your FSM design (tb_rc¢_fsm.sv).
This testbench reads text file, tb_rc_fsm.txt, one vector per clock cycle. If you have
mismatches, the text file is well documented as to the sequence of steps the test is taking. You
should be able to diagnose your design errors with this information.

The second testbench tests the top level rotation counter (tb_rotation_counter.txt). You should
not have any problems with this as you are provided a completed rotation_counter design. If
you do have mismatches, it could be due to your FSM design — since the FSM testbench does not
test full functionality.

Synthesis and Hardware Test
A top level i/o wrapper is provided: DE10_LITE _Temple Top.sv. A block diagram is shown
below. Synthesize it (lab7_top.qsf).

rotation_counter

As you can see from this design there are two paths to the quadrature inputs, ¢ _a and ¢_b.
These are selected by sw/f2]. If sw/[2] is off, the quadrature signals come from switches sw/1:0].
If sw/2] is on, the quadrature signals come from the Arduino Uno R3 expansion header:
arduino_out[1:0]. You can test the

8 8/14/2022

design using either of these inputs. As you switch between these inputs, it is possible you will

get to the error state (LED 3 on). Then reset the state machine (center pushbutton). Note the

other LEDs show the states of all of the input signals.

The rotary encoder should plug directly into the Arduino header. Identify the connector on

your hardware. The rotary encoder contains only switches connected with resistors, so you

shouldn't damage anything if you don't connect it correctly.

NC
IOREF
Arduino_Reset N
VCC3P3
VCC5
GND
GND
VCC5
.\

Reset

A0
Al
A2
A3
AL
A5

D12/MISO
D13/SCK

ADC_INO
ADC_
ADC_
ADC_IN3
ADC_
ADC_INS

Arduino_1012
Arduino_1013

Arduino_Reset_n

N1
IN2

IN4

Arduino

...............

SCL SCL

SDA SDA

NC

GND

Arduino_I013 D13/SCK

Arduino_IO12 D12/MISO

Arduino 1011 D11/MOSI

Arduino_IO10 D10/SS

Arduino_I0O9 D9

Arduino_lO8 D8

Arduino_lO7 D7

Arduino_lO6 D6

Arduino_lO5 Dg — CLK

@o_IO4 D4 — DT

rduino_lO3 D3

Arduino_l02 D2 — VCC (+)

{®r@tino_I0O1 D1/TX

Arduino_lO0 DO/RX

— GND

--------- Arduino_1011 D11/MOSI

Figure 3-19 lists the all the pin-out signal name of the Arduino Uno connector. The blue font
represents the Arduino pin-out definition.

It should plug directly into 4 pins as shown above (the sw connector on the encoder is
not connected).

Each detent on the rotary encoder will go through four counts. There are 20 detents per

rotation, or 80 counts per 360 degrees. You should be able to move carefully between the

detents and see single digit changes.

8/14/2022

Appendix — Controller Design Process

Step 1: Capture the behavior

e C(Create an FSM diagram describing this behavior

o

(@]

List all possible states, giving each an appropriate name;

Define all state to state transitions, and the conditions (inputs) for transitioning
or holding;

Define all outputs at each state;

Mentally execute to verify the specifications met.

Step 2: Convert to circuit

e C(Create a Verilog module implementing the FSM

©)

List inputs, outputs and determine the size of the state register (number of states)
— define top level module i/0;
Define state names using parameter statement, or for SystemVerilog use the
enumerate construct, example:

= enum logic [1:0] {sSO, S1, S2, S3} state,

next_state;

Set up two always blocks — one sequential logic and one combinational logic
(draw block diagrams if necessary);
Sequential logic has simple: state <= next_state;
Combinational logic has always_comb begin, and blocking procedural
assignments;
Divide combinational logic into 3 sections: default, main logic and priority logic;
In default section define default behavior of all output signals and
next_ state;
In priority section (at the bottom) take care of the priority logic (typically resets);
In main logic section set up a case statement based on state, with each defined
state having a matching case;
Insert the appropriate logic for each state in the case construct.

10 8/14/2022

	Introduction
	Detailed Specification:
	Design Steps
	Simulation/Verification
	Synthesis
	Design Steps
	Simulation/Verification
	Synthesis and Hardware Test

