
1 8/14/2022

Lab 7 – Robust Rotary Encoder Design
Parts A and B

Introduction
Often when working with designs that require some type of position or rotation sensing, an
electro-mechanical device called an encoder is used. It may either encode linear position (linear
encoder) or rotation (rotary encoder). In this lab you will be introduced to the latter, a rotary
encoder: a device where using the proper electrical interface you can determine the rotation
angle of a shaft. A few example applications are: a) an interface between a motor and a control
circuit to provide information to control the speed of the motor; b) a volume or tuner control on
a digital audio system.

The goal of this design is to use the encoder signals as inputs to a counter. We will count up or
down based on the direction of the rotation. The four digit display will show the counter
outputs. A high level block diagram is shown below.

This lab will be divided into two parts. In part A you will design the encoder datapath. In part B
you will design the controller or Finite State Machine for the design.

There are many technical documents and videos on the web describing the operation of a rotary
encoder. Here is one you should review before continuing these instructions:

https://www.youtube.com/watch?v=zzHcsJDV3_o&feature=emb_logo

This video demonstrates optical components as the sensing elements. We will be using a device
that has mechanical contacts as the sensing elements – but the ideas are the same. Note in the
second half of this video the device has two output channels: A and B. These are out of phase by
90 degrees and thus are also known as quadrature outputs (out of phase by a quarter of a
revolution).

For this lab I will call these two quadrature signals: q_a and q_b. There are a few things of
interest with such signals:

• When rotating the shaft, direction a will have a two-bit sequence {q_a,q_b} of:
2'b00, 2'b01, 2'b11, 2'b10, 2'b00, 2'b01, 2'b11, 2'b10, 2'b00, …

Electromechanical
Rotary Encoder

Your Lab
Design

4-Digit Display

https://www.youtube.com/watch?v=zzHcsJDV3_o&feature=emb_logo

2 8/14/2022

• When rotating the shaft, direction b will have a two-bit sequence {q_a,q_b} of:
2'b00, 2'b10, 2'b11, 2'b01, 2'b00, 2'b10, 2'b11, 2'b01, 2'b00, …

• Note the sequences opposite each other as per each rotation direction.
• The sequence is a 2-bit gray code – i.e., only one bit in the sequence changes.
• In order to determine the direction of rotation, we need to store the previous 2-bit code.

o We will use D-ff's to store the previous code.
o Because the signals will be asynchronous with the clocks driving the D-ff's, there

will often be setup and hold violations.
o To take care of these violations, we will use two D-ff's back to back as

synchronizers.
• We do not need to debounce the inputs, as if there is some contact or debounce noise

from a mechanical switch, the design of the circuit will take care of it (another advantage
of using gray code).

Detailed Specification:
Let's look at a block diagram that incorporates these synchronizing and storage ideas for the
input quadrature signals.

clk

d q

clk

d q

clk

d q

clk

d q

clk

sync0_a sync1_a q_prev_aq_a

q_now_a

clk

d q

clk

d q

clk

d q

clk

d q

sync0_b sync1_b q_prev_bq_b

q_now_b

re-coder
(see truth

table)

quad_ctl

2

rot_enc_rec

Synchronizers Current q’s Previous q’s

3 8/14/2022

We have the two quadrature inputs (q_a and q_b) and a system clock (clk) as inputs. For each
quadrature input, we have two D-ff's back to back as synchronizers, followed by two D-ff's to
store the current (q_now) and previous state (q_prev) of these signals. The importance of these
signals is that now they are synchronized to our system clock.

Now, how should we to process these quadrature signals? Let's map out all of the possibilities of
these four signals (q_prev_a, q_prev_b, q_now_a, q_now_b) in the truth table below.

You can see they have been separated into four functional patterns:

• Hold (previous are equal to the current pattern)
• Count up (previous to current follows one gray pattern)
• Count down (previous to current follows the reverse gray pattern)
• Error (previous to current are illegal transitions – two bits transitioning)

q_prev_a q_prev_b q_now_a q_now_b quad_ctl function
0 0 0 0

2'b00 Hold
0 1 0 1
1 0 1 0
1 1 1 1
0 0 0 1

2'b01 Count up
0 1 1 1
1 0 0 0
1 1 1 0
0 0 1 0

2'b10 Count down
0 1 0 0
1 0 1 1
1 1 0 1
0 0 1 1

2'b11 Error
0 1 1 0
1 0 0 1
1 1 0 0

The 2-bit output quad_ctl signal reflects these four possible conditions. Is this design encoding
or decoding? I call it re-coding, since it takes an encoded signal and codes it into another code
(quad_ctl) – or re-codes it. In the previous block diagram the combinational block called re-code
provides this functionality. The top level re-coder module incorporating all of these
specifications is called: rot_enc_rec.

4 8/14/2022

Now that we've covered the rotary encoder input flow, let's look at the design from the top
level to create the functionality defined in the introduction. I call this top level block:
rotatation_counter, shown in the diagram below.

The input signals are the two quadrature signals (q_a, q_b), the clock (clk) and a reset (rst)
signal. The outputs are the cathode (cathode) and anode (anode) signals that drive the four
digit display hardware. On the right you can see the instance of the display_driver that contains
the seven-segment decoder and anode decoder you designed in a previous lab. An error signal
(error) will also be connected to an LED. On the left side of the figure, you see the rotary re-
coder instance discussed previously.

The other two components are a datapath and a controller. The controller (rc_fsm) is a finite
state machine (FSM) that will be discussed in detail later. It basically takes the quad_ctl
signals as inputs and provides two control output signals (enable, up_down) to the counter
datapath (up_down_count_dp). The counter datapath contains a four decimal digit up down
counter. Let's discuss this module next.

Inside this datapath we need four binary coded decimal digits. A block diagram below shows a
block diagram of one of these digits, called up_down_bcd_counter. The specifications for the
combinational logic are summarized in the table below. Note it counts up/down and rolls over
at the nine/zero transitions.

display_driver

clk

rst

digit0

digit1

digit2

digit3

display_on

anode_sel

anode

cathode

u_dd

up_down_count_dp

clk

rst

up_down

enable

digit0

digit1

digit2

digit3

u_uddp

rc_fsm

clk

rst

quad_ctl

up_down

enable

error

u_fsm

7

4

2

no connection

1'b1

digit3

digit2

digit1

digit0

2

enable

up_down

rot_enc_rec

clk

q_b

q_a

quad_ctl

u_rot

quad_ctl

anode

cathode

4
4

4

4

error

clk

q_b

q_a

rst

rotation_counter

Controller Datapath (from prev. lab)
Rotary Encoder

Re-coder

5 8/14/2022

rst carry_in up_down bcd next_bcd carry_out Function
1 x x x 4'd0 x Reset
0 0 x 4'd0 to 9 hold bcd 0 Hold
0 1 1 4'd0 to 8 bcd + 1 0

Count up
0 1 1 4'd9 4'd10 1
0 1 0 4'd1 to 9 bcd - 1 0 Count

down 0 1 0 4'd0 4'd9 1

The up down count datapath module (up_down_count_dp) is relatively straightforward. We
need one instance for each digit with the carry outs connected to the carry ins. (Counting down
these become borrow outs/ins.) The up down, reset and clock signals are each wired together.
These details are illustrated in the block diagram below.

up_down_bcd_counter

clk

rst

carry_in

up_down

bcd

carry_out

u_bcd0

up_down_bcd_counter

clk

rst

carry_in

up_down

bcd

carry_out

u_bcd1

up_down_bcd_counter

clk

rst

carry_in

up_down

bcd

carry_out

u_bcd2

up_down_bcd_counter

clk

rst

carry_in

up_down

bcd

carry_out

u_bcd3

no connectionc_out0 c_out1 c_out2

rst

enable

up_down

clk

digit3

digit2

digit1

digit0

up_down_count_dp

4

4

4

4

clk

d q

sequentialcombinational

next_bcd bcd

bcd

4

4

4

up_down

rst

carry_in

carry_out

clk

up_down_bcd_counter

6 8/14/2022

Finally, we cover the specification for the rotation counter fsm module (rc_fsm). You can see
its top level definition from its instantiation in the block diagram for rotation_counter. There
are three input signals (clk, rst and quad_ctl) and four output signals (error, enable and
up_down). Their functionalities are defined in the following state diagram.

Note the four states that are controlled by the input signals quad_ctl. Each state then controls the
control output signals (error, enable, and up_down). Also note that to leave any state, all of the
possible combinations of quad_ctl are defined. Finally, if you reach the ERROR state, there is
no escape except for resetting.

Part A – Datapath

Design Steps
The rotary encoder re-coder (rot_enc_rec) module will be already provided to you in your
design path. Review it and compare it to the block diagram and truth table provided in the
specification section. Note the input flip-flop strings to synchronize and store the quadrature
signals. Also note the re-coder combinational logic defined in the truth table, implemented as a
case statement.

You need to complete the design of two modules:

HOLD

enable = 0, error = 0,
up_down = don’t care

quad_ctl = 2'b00

ERROR

enable = 0, error = 1,
up_down = don’t care

(hold forever,
until reset)

UP

enable = 1, error = 0,
up_down = 1

DOWN

enable = 1, error = 0,
up_down = 0

rst

quad_ctl = 2'b01

quad_ctl = 2'b11

quad_ctl = 2'b10
quad_ctl = 2'b00

quad_ctl = 2'b11

quad_ctl = 2'b11

quad_ctl = 2'b01

quad_ctl = 2'b10

quad_ctl = 2'b00

quad_ctl = 2'b01 quad_ctl = 2'b10

7 8/14/2022

• up down BCD counter (module up_down_bcd_counter)
Open the file: up_down_bcd_counter.sv and compete the design as per the
specifications in the previous section. This is a single digit binary coded decimal counter
that counts up or down from 0 to 9.

• up down count datapath (module up_down_count_dp)
Open the file up_down_count_dp.sv and complete the design as per the specifications
in the previous section. You will be instantiating four of the bcd counters so that this
datapath counts up or down from 0000 to 9999 in decimal.

Simulation/Verification
There is only one testbench for Part A, tb_up_down_count_dp.sv. You will be testing both
modules with this testbench. The testbench reads the text file, tb_up_down_count_dp.txt and
applies these test vectors in the sequence shown – one line per clock cycle. If you have
mismatches, they should help you identify your error. It could be either in your counter or
datapath where you are connecting the counters together. Remember, you can use gtkwave to see
all of the signals from the simulation.

Synthesis
There is no synthesis for Part A. Just be sure your simulation passed without errors as these
blocks will be used for Part B.

Part B – Controller

Design Steps
You need to complete the design of the rotation counter finite state machine (rc_fsm.sv). A
skeleton module will be provided to you. You should follow the recipe for FSM design
described in the class videos and summarized in an Appendix (Controller Design Process) at the
end of this document.

Part of the rotation counter (rotation_counter) module will be already provided to you in your
design path. You need to edit rotation_counter.sv. Instantiate and connect your datapath
(up_down_count_dp) and FSM (rc_fsm) modules as per the block diagram of the rotation
counter shown previously in this document. The other two modules (rot_enc_rec and
display_driver) will already be instantiated.

8 8/14/2022

Simulation/Verification
There are two testbenches for Part B. The first testbench tests your FSM design (tb_rc_fsm.sv).
This testbench reads text file, tb_rc_fsm.txt, one vector per clock cycle. If you have
mismatches, the text file is well documented as to the sequence of steps the test is taking. You
should be able to diagnose your design errors with this information.

The second testbench tests the top level rotation counter (tb_rotation_counter.txt). You should
not have any problems with this as you are provided a completed rotation_counter design. If
you do have mismatches, it could be due to your FSM design – since the FSM testbench does not
test full functionality.

Synthesis and Hardware Test
A top level i/o wrapper is provided: DE10_LITE_Temple_Top.sv. A block diagram is shown
below. Synthesize it (lab7_top.qsf).

As you can see from this design there are two paths to the quadrature inputs, q_a and q_b.
These are selected by sw[2]. If sw[2] is off, the quadrature signals come from switches sw[1:0].
If sw[2] is on, the quadrature signals come from the Arduino Uno R3 expansion header:
arduino_out[1:0]. You can test the

7

4
anode

cathode

error

q_b

q_a

rotation_counter

clk

rst

m2x1
JA[1]

sw[0]

sw[2]

0

m2x1
JA[2]

sw[1]
0

q_b

q_a

clk

btnC

 led[5]

 led[4]

sw[2] led[2]

sw[1] led[1]

sw[0] led[0]

an[3:0]

seg[6:0]

led[3]

9 8/14/2022

design using either of these inputs. As you switch between these inputs, it is possible you will
get to the error state (LED 3 on). Then reset the state machine (center pushbutton). Note the
other LEDs show the states of all of the input signals.

The rotary encoder should plug directly into the Arduino header. Identify the connector on
your hardware. The rotary encoder contains only switches connected with resistors, so you
shouldn't damage anything if you don't connect it correctly.

It should plug directly into 4 pins as shown above (the sw connector on the encoder is
not connected).

Each detent on the rotary encoder will go through four counts. There are 20 detents per
rotation, or 80 counts per 360 degrees. You should be able to move carefully between the
detents and see single digit changes.

10 8/14/2022

Appendix – Controller Design Process
Step 1: Capture the behavior

• Create an FSM diagram describing this behavior
o List all possible states, giving each an appropriate name;
o Define all state to state transitions, and the conditions (inputs) for transitioning

or holding;
o Define all outputs at each state;
o Mentally execute to verify the specifications met.

Step 2: Convert to circuit
• Create a Verilog module implementing the FSM

o List inputs, outputs and determine the size of the state register (number of states)
– define top level module i/o;

o Define state names using parameter statement, or for SystemVerilog use the
enumerate construct, example:

enum logic [1:0] {S0, S1, S2, S3} state,

next_state;

o Set up two always blocks – one sequential logic and one combinational logic
(draw block diagrams if necessary);

o Sequential logic has simple: state <= next_state;

o Combinational logic has always_comb begin, and blocking procedural
assignments;

o Divide combinational logic into 3 sections: default, main logic and priority logic;
o In default section define default behavior of all output signals and

next_state;

o In priority section (at the bottom) take care of the priority logic (typically resets);
o In main logic section set up a case statement based on state, with each defined

state having a matching case;
o Insert the appropriate logic for each state in the case construct.

	Introduction
	Detailed Specification:
	Design Steps
	Simulation/Verification
	Synthesis
	Design Steps
	Simulation/Verification
	Synthesis and Hardware Test

