
1 8/12/2022

Lab 5 – Combinational Shift Logic: Up/
Down/Arithmetic/Circular/Barrel

Introduction
Shifting operations are commonly used in digital design. Just as shifting in base 10 is
multiplication/division by 10, shifting in base 2 (binary) is multiplication/division by 2. Also the
shift operation is important when converting data between parallel and serial, for transmission
of multi-bit data serially over a single channel, or a single wire bus. While you will be designing
static shift operations (combinational logic) in this lab, these operations are typically
implemented with registers, triggered by clock signals, i.e., one shift per clock cycle.

din7 din6 din5 din4 din3 din2 din1 din0

dou7 dou6 dou5 dou4 dou3 dou2 dou1 dou0

When shifting up or down, what is placed in the vacated bit position is important. The simplest
operation is to replace the vacated bit with zero. When shifting up, this becomes a multiplication
by 2 – and the result is obviously an even number. When shifting down and replacement with
zero, we have division by 2 – but only for an unsigned number. If the number is signed, then the
most significant bit is 0 or 1 depending on the sign. The vacated bit must keep the value that was
shifted out of the bit. This sign replacement operation, also known as sign extension, is called an
arithmetic shift. I will call this a linear shift operation.

In contrast to a linear shift, a circular shift replaces the vacated bit with the bit that would have
been discarded in the shift operation, i.e., a rotation. Circular shifting an n-bit word by n shifts
leaves the word unchanged. Sometimes the circular shift has an advantage when transmitting a
data word serially by shifting the bits in a storage register, as when the transmission is complete
(n-shifts) the original data is still intact.

din7 din6 din5 din4 din3 din2 din1 din0

dou7 dou6 dou5 dou4 dou3 dou2 dou1 dou0

??
discard

2 8/12/2022

Barrel shifting is shifting by more than one bit. While this seems trivial, when we start looking at
synchronous or clocked operations, in some applications it is important to be able to shift by
more than one bit in a single clock cycle. Barrel shifting can be either circular or linear.

The Verilog implementation of the shift operations can be one of several:

(some examples below using: logic [7:0] data;)

• explicit bit manipulations using the concatenation operator: {1'b0,data[7:1]}
• using the unsigned shift operator: data >> 1
• using the signed shift operator: data >>> 1
• using divide by or multiply by 2n operator: data/2 (be careful of the signed/unsigned

declarations and defaults – there are several Verilog/SystemVerilog rules to consider)

Detailed Specification:
In this lab you will design a number of 8-bit shifter operations input data defined by switches 0-7.
The functionality of the particular shift operation is controlled by the top push button (key0) and
switches 8-9 and on the DE10 board. The results of the operation will be displayed on the 8
LEDs (0-7).

The shift operations are defined in the table below:

{sw[9:8], key0} Operation
3'b000 no operation, output = input
3'b001 shift 1 bit left, pad with 0
3'b010 shift 1 bit right, pad with 0
3'b011 circular shift 1 bit left
3'b100 circular shift 1 bit right
3'b101 arithmetic shift 1 bit right, pad with sign
3'b110 barrel circular left shift by 3 bits
3'b111 barrel arithmetic right shift by 5 bits

Although only 3 inputs are used in this problem, others can be added to investigate additional
arithmetic operations.

Design/Module
In this design there is only one design module that you need to develop, comb_shifters. As
illustrated in the block diagram below, it has 11 inputs: 3-bit select (wired to the top push
button and switches 8-10), 8-bit data_in (wired to switches 0-7), and 8-bit data_out (wired to
LEDs 0-7).

3 8/12/2022

This module is instantiated in the top level i/o wrapper, DE10_LITE_Temple_Top.sv, for
implementation. It is also instantiated in the top level test bench, tb_comb_shifters.sv, for
simulation/verification. The test vectors for this design are contained in tb_comb_shifters.txt,
with 2048 vectors.

As usual, the Quartus Settings file (lab5_top.qsf) contains the mapping and signal naming
between the pins on the FPGA and the signal names used at the top level i/o wrapper
(DE10_LITE_Temple_Top.sv). Do not modify these files for this lab.

Design step:

• Complete the design for comb_shifters based on the above specification.

Simulation/Verification
The testbench, tb_comb_shifters.sv, will read the text file, tb_comb_shifters.txt. Neither
of these files should be edited.

Verification step:

• There is one simulation command file (comb_shifters.m_sim). Verify your
comb_shifters design by right clicking on the command file and Run. Modify your
design as needed.

This simulation will test all 2048 possible input combinations. Your design MUST pass the
simulation, as you will not have time to go through the entire 2048 button/switch
combinations in

4 8/12/2022

hardware. The instructor will be simulating and checking your design for mismatches after your
report is due.

Synthesis
The top level i/o wrapper is DE10_LITE_Temple_Top. Generate a binary file as you did in
past labs
(right-click and Run on: lab5_top.qsf). When successful, you will generate the file:
lab5_top.sof. Copy it to your shared folder to load and run on your DE10 board. Select some
random input data values on the 8 switches and observe the binary result displayed on the
LED's. Then change the button and select switches see if the shifting operation makes sense as
per the specifications in the previous table. Use both positive and negative binary patterns
(msbit). Include the results of your selected patterns in your lab report. (You would need 2048
data patterns to verify all of them!)

Extras to try
a) Try different shifting operations by modifying your design, i.e., barrel shifting of

different shift values.
b) For practice on instantiation, wire the least significant 4 LED bits to drive one of the

digits of the seven segment decoder (recall last lab).

5 8/12/2022

Useful Verlog rules and constructs for signed operation
In version Verilog 2001 many signed operations were added to the language syntax. Some of
those are listed below.

• The default of a reg or wire is unsigned. To make the signal bus signed, add the
signed keyword. Example:

wire signed [7:0] data_in;

• The default arithmetic operations are unsigned. However, when working with mixed
signed and unsigned signals, the rule is that if any operand in an expression is
unsigned the full operation is considered to be unsigned. So to get a signed operation
by using the operators described below, all operands must be signed. This can be a source
of errors.

• The default base of literal numbers is unsigned decimal. Thus, they are zero extended to
the size needed. To override/control this, use the Verilog prefixes. The syntax is:

<+ or -><size>'<signed><base><value>

<+ or ->
<size>

(optional) the sign of the number
(optional) number of bits (default=32)

<signed> (optional) s for signed, nothing for unsigned
<base> b, o, d or h for binary, octal, decimal or

hexadecimal, respectively

Example: assign data_in = -8'sd98;

• Type casting operators are available: $signed() or $unsigned(). Example, if
data_out is signed and data_in is unsigned:

assign data_out = $signed(data_in);

• For signed right shifting, a new operator was introduced: >>> Thus, >> does an
unsigned shift, and >>> does the signed (sign extension) shift. While signed and

unsigned left shifting are identical (0 fill), a signed left shift operator was added for
consistency: <<< Example (remember, for this operation to work both data_out and
data_in must be declared as signed):
assign data_out = data_in >>> 3; // signed divide by 8

