
1 8/12/2022

Lab 4 – Four-bit, Error Correction Code (ECC) using 
Hamming(7,4) Code Decoding 

Introduction 
In Lab 2 you designed a Hamming(7,4) encoder. In this lab you will be designing for the reverse 
operation, i.e., a decoder. The input to the decoder will be a 7-bit Hamming code. The output 
will be the original 4-bit code. You will also be able to insert a 1-bit error in the input Hamming 
code and see that it gives the correct original code. 

This technique can be used when transmitting data through an environment where only single bit 
errors are expected per word of data. 

In the hardware implementation, you will be defining test Hamming codes in your design by the 
setting of seven of the switches. You will observe the decoded binary output on four of the 
LEDs. If the code has a one-bit error, you will observe the index of the error bit on the seven-
segment display. Therefore, you will need to reuse the seven-segment display decoder you 
designed in Lab 3. 

While the input has 128 possible codes (27), only 16 are the error free codes as shown in the 
table below (basically the reverse of Lab 2). The full 128 possible input codes are provided to 
you in the testbench text file, tb_ lab4_decoder.txt. 

h_code[7:1] decode[4:1] 
7'b0000000 4'b0000 
7'b0000111 4'b0001 
7'b0011001 4'b0010 
7'b0011110 4'b0011 
7'b0101010 4'b0100 
7'b0101101 4'b0101 



2 8/12/2022

h_code[7:1] decode[4:1] 
7'b0110011 4'b0110 
7'b0110100 4'b0111 
7'b1001011 4'b1000 
7'b1001100 4'b1001 
7'b1010010 4'b1010 
7'b1010101 4'b1011 
7'b1100001 4'b1100 
7'b1100110 4'b1101 
7'b1111000 4'b1110 
7'b1111111 4'b1111 

Table 1 Hamming(7,4) decode data. 

In order to do 1-bit error correction and determine the bit in error, let's look at the 
implementation details of the Hamming(7,4) code. From Lab 2 you recall that the code was put 
together as: 

e[7:1] = {d[4], d[3], d[2], p3, d[1], p2, p1} 

It is pretty clear from this as to how to unwrap the data and parity bits. Since you used even 
parity to define p1, p2 & p3 in Lab 2, then the parity check (pc) operation (bits) should be: 

pc1 = p1 xor d[1] xor d[2] xor d[4] 

pc2 = p2 xor d[1] xor d[3] xor d[4] 

pc3 = p3 xor d[2] xor d[3] xor d[4] 

Putting this information in a table form, where the highlighted bits are those used for the parity 
checking operation: 

Parity 
Check 

e[7] 
(d[4]) 

e[6] 
(d[3]) 

e[5] 
(d[2]) 

e[4] 
(p3) 

e[3] 
(d[1]) 

e[2] 
(p2) 

e[1] 
(p1) 

pc3 d[4] d[3] d[2] p3 
pc2 d[4] d[3] d[1] p2 
pc1 d[4] d[2] d[1] p1 

Table 2 Parity Check matrix. 

Here is the beauty of Dr. Hamming's design. Observe the values of concatenated bits: 
{pc3,pc2,pc1}. If there are no bit errors in the input: h_code, the 3-bit parity check value is 
3'b000. If the first bit (p1) is in error, the parity check value is 3'b001. If p2 is flipped, the 
check value is 3'b010. If d[1], 3'b011, and so on; thus, the 3-bit parity check code defines the 
binary index of the flipped bit. Rather than use pc3, pc2 & pc1, we will combine/define these 
into a 3-



3 8/12/2022

bit signal: bad_bit[3:1] as illustrated in the table below. The input signal names in the table 
have also been converted to those used in this lab (h_code). 

Parity 
Check 

h_code[7] h_code [6] h_code [5] h_code [4] h_code [3] h_code [2] h_code [1] 

bad_bit[3] h_code[7] h_code [6] h_code [5] h_code [4] 
bad_bit[2] h_code[7] h_code [6] h_code [3] h_code [2] 
bad_bit[1] h_code[7] h_code [5] h_code [3] h_code [1] 

Table 3 Parity check matrix translated to bad_bit signals. 

Finally, it is also pretty obvious that if two bits are flipped, the index does not correctly point to 
either of the bits in error. 

Detailed Specification: 
This design will have seven input switches (sw[6:0]) that will define the 7-bit Hamming code to 
test your decoder’s input. The output of the decoder will drive: a) 4-LEDs that represent the 4-
bit binary output data and b) the 3-bit parity check code which will be displayed on digit 0 of the 
seven-segment display. To drive this display you will need to use the seven-segment decoder 
module from your previous lab.

When implemented in hardware, you should be able to set the 7 switches to any of the Hamming 
codes defined in Table 1 and see the corresponding binary output decoded on the LEDs. For any 
of these 16 non-error codes, the seven-segment display digit should be zero. Then toggle one bit 
at a time on the selected code and note how the display digit changes from zero to the bit index 
that you are changing. Thus, it is easy to imagine how using this information you could correct 
the bit in error and display the correct code. 

Design/Module 
In this design you will need to work with three separate modules. The main module that contains 
the basic design is hamming7_4_decode. This module decodes the 7 input bits to 7 output bits, 
consisting of: 4 bits of decoded data (Table 1) and 3 parity check bits that point to the bit in error 
(Table 3). A second module is your seven-segment decoder (svn_seg_decoder) from Lab 3. The 
Lab 4 project file automatically links your seven-segment decoder design from Lab 3. It does 
not link the testbench, since this design has already been verified in Lab 3. 

A third module, lab4_decoder, is the decoder wrapper. It instantiates these two modules into a 
single module that is finally instantiated in the top level i/o wrapper. The lab4_decoder module 
has 7 input switches, 4 LED output signals, and 11 output signals for the seven-segment display 



4 8/12/2022

(4 anodes, 7 cathodes). Inside this module, a few signals are hardwired – or set to fixed levels 
(see block diagram below). 

• The signal driving the display_on from the instantiating of the seven-segment decoder is 
set to logic one so that the display is always on.

• The signals selecting the anodes (an) are set so that only one digit is displayed.

Block diagrams for the two new modules are shown below. Note the module names and the 
signal names. Skeleton files for these modules are provided in your design path. 

As usual, the Quartus settings file (lab4_top.qsf) contains the mapping and signal naming 
between the pins on the FPGA and the signal names used at the top level i/o wrapper 
(DE10_LITE_Temple_Top.sv). Do not modify these files for this lab. 

lab4_decoder

sw

cathode

an = 4'b1110

7

4

7

svn_seg_decoder

bcd_in[3:0]

seg_out[6:0]
4

7

display_on

hamming7_4_decode

h_code[7:1]

bad_bit[3:1]

7

4

decode[4:1]

3
Led

4

bcd_in[3] = 0; bcd_in[2:0] = bad_bit[3:1];

= 1'b1

u_svn

u_hdcde



5 8/12/2022

Design steps: 

a) The testbench file, tb_hamming7_4_decode.txt, is provided to you based on the error
free truth table for the Hamming code as per Table 1, and expanded to include the error
codes as well as the output bad_bit signals. Look over this text file, but do not change it.
Note that because there are 7 input signals, there are 27 = 128 possible combinations of
this input pattern. (FYI, this was generated using a C program to implement the
specification.)

b) Complete the design for hamming7_4_decode based on this specification (equations on
page 2), including the bad_bit output signal.

c) Complete the design for lab4_decoder that instantiates this module and the seven-
segment decoder into a single module and appropriately connects to the i/o's.

Simulation/Verification 
There are two testbench wrappers – one for each of the two above modules: 
tb_hamming7_4_decode.sv and tb_lab4_decoder.sv. Each of these has a text file (.txt) to 
provide the test vector data. Your seven-segment decoder was tested in Lab 3. 

There are two simulation command files (right-click each of the *.m_sim files and Run) 
associated with the testbenches: 

• hamming7_4_decode.m_sim, to simulate and test the Hamming(7-4) decoder 
module alone; and

• lab4_decoder.m_sim, to simulate and test the integration of the decoder modules.

Remember to save a screen shot of each simulation log file for your reports. There will be two 
different simulation log files you will need. 

Use the vcd waveform files to help debug your code if it doesn’t pass the simulations. 

Synthesis 
Generate a binary file as you did in past labs (right-click and Run on: lab4_top.qsf). When 
successful, you will generate the file: lab4_top.sof. Copy it to your shared folder to load and 
run on your DE10-Lite board. 

Insert some known error free codes as defined in the truth table in the Introduction. Then 
switch some of the bits, one at a time and see how your display points to the bit (switch) in 
error. (Some of these will not be the data bits, but the check bits.) 




