Lab 4 — Four-bit, Error Correction Code (ECC) using

Introduction

Hamming(7,4) Code Decoding

In Lab 2 you designed a Hamming(7,4) encoder. In this lab you will be designing for the reverse

operation, i.e., a decoder. The input to the decoder will be a 7-bit Hamming code. The output

will be the original 4-bit code. You will also be able to insert a 1-bit error in the input Hamming

code and see that it gives the correct original code.

This technique can be used when transmitting data through an environment where only single bit

errors are expected per word of data.

Transmitter

Transmission
Encoder — adds correction bits Path (bit errors)
4 7

Receiver

Decoder — checks/corrects
received code

In the hardware implementation, you will be defining test Hamming codes in your design by the

setting of seven of the switches. You will observe the decoded binary output on four of the

LEDs. If the code has a one-bit error, you will observe the index of the error bit on the seven-

segment display. Therefore, you will need to reuse the seven-segment display decoder you

designed in Lab 3.

While the input has 128 possible codes (27), only 16 are the error free codes as shown in the

table below (basically the reverse of Lab 2). The full 128 possible input codes are provided to
you in the testbench text file, tb_ lab4_decoder.txt.

h_code[7:1] decode[4:1]
7'b0000000 40000
7'b0000111 450001
7'b0011001 40010
7'b0011110 40011
7'b0101010 4'b0100
7'b0101101 40101

8/12/2022

h _code[7:1] decode[4:1]
7'b0110011 40110
7'b0110100 40111
7'b1001011 41000
7'b1001100 451001
7'b1010010 411010
7'b1010101 41011
7'b1100001 4'b1100
7'b1100110 41101
7'b1111000 41110
7bl1111111 41111

Table 1 Hamming(7,4) decode data.

In order to do 1-bit error correction and determine the bit in error, let's look at the
implementation details of the Hamming(7,4) code. From Lab 2 you recall that the code was put
together as:

e[7:1] = {d[4], d[3], d[2], p3, d[1l], p2, pl}

It is pretty clear from this as to how to unwrap the data and parity bits. Since you used even
parity to define p1, p2 & p3 in Lab 2, then the parity check (pc) operation (bits) should be:

pcl = pl xor d[l] xor d[2] xor d[4]
pc2 = p2 xor d[l] xor d[3] xor d[4]
pc3 = p3 xor d[2] xor d[3] xor d[4]

Putting this information in a table form, where the highlighted bits are those used for the parity
checking operation:

Parity e[7] e[6] e[5] e[4] e[3] e[2] e[1]

Check | (d[4]) | (d[3]D | (d[2]D | (p3) | (d[1]) | ®2) | (pD

pc3 d[4] d[3] d[2] p3

pc2 d[4] d[3] d[1] p2

pcl d[4] d[2] d[1] pl
Table 2 Parity Check matrix.

Here is the beauty of Dr. Hamming's design. Observe the values of concatenated bits:
{pc3,pc2,pcl}. If there are no bit errors in the input: h_code, the 3-bit parity check value is
3'b000. If the first bit (p1) is in error, the parity check value is 3'b001. If p2 is flipped, the
check value is 3'b010. If d[1], 3'b011, and so on; thus, the 3-bit parity check code defines the
binary index of the flipped bit. Rather than use pe3, pc2 & pel, we will combine/define these
into a 3-

2 8/12/2022

bit signal: bad_bit[3:1] as illustrated in the table below. The input signal names in the table

have also been converted to those used in this lab (h_code).

Parity
Check

h code[7]

h_code [6]

h_code [5]

h_code [4]

h_code [3]

h_code [2]

h _code [1]

bad_bit[3]

h code[7]

h code [6]

h code [5]

h code [4]

bad_bit[2]

h code[7]

h code [6]

h code [3]

h code [2]

bad bit[1]

h code[7]

h code [5]

h code [3]

h code [1]

Table 3 Parity check matrix translated to bad_bit signals.

Finally, it is also pretty obvious that if two bits are flipped, the index does not correctly point to
either of the bits in error.

Detailed Specification:

This design will have seven input switches (sw[6:0]) that will define the 7-bit Hamming code to
test your decoder’s input. The output of the decoder will drive: a) 4-LEDs that represent the 4-
bit binary output data and b) the 3-bit parity check code which will be displayed on digit 0 of the
seven-segment display. To drive this display you will need to use the seven-segment decoder
module from your previous lab.

When implemented in hardware, you should be able to set the 7 switches to any of the Hamming
codes defined in Table 1 and see the corresponding binary output decoded on the LEDs. For any
of these 16 non-error codes, the seven-segment display digit should be zero. Then toggle one bit
at a time on the selected code and note how the display digit changes from zero to the bit index
that you are changing. Thus, it is easy to imagine how using this information you could correct
the bit in error and display the correct code.

Design/Module

In this design you will need to work with three separate modules. The main module that contains
the basic design is hamming7 4 decode. This module decodes the 7 input bits to 7 output bits,
consisting of: 4 bits of decoded data (Table 1) and 3 parity check bits that point to the bit in error
(Table 3). A second module is your seven-segment decoder (svn_seg decoder) from Lab 3. The
Lab 4 project file automatically links your seven-segment decoder design from Lab 3. It does
not link the testbench, since this design has already been verified in Lab 3.

A third module, lab4_decoder, is the decoder wrapper. It instantiates these two modules into a
single module that is finally instantiated in the top level i/o wrapper. The lab4_decoder module
has 7 input switches, 4 LED output signals, and 11 output signals for the seven-segment display

3 8/12/2022

(4 anodes, 7 cathodes). Inside this module, a few signals are hardwired — or set to fixed levels
(see block diagram below).

* The signal driving the display_on from the instantiating of the seven-segment decoder is
set to logic one so that the display is always on.
* The signals selecting the anodes (an) are set so that only one digit is displayed.

Block diagrams for the two new modules are shown below. Note the module names and the
signal names. Skeleton files for these modules are provided in your design path.

hamming7_4 decode

bad_bit[3:1] L

74 h_code[7:1] 3
7 decode[4:1] L

lab4_decoder

u_svn

svn_seg_decoder

4 bcd_in[3:0] cathode

seg_out[6:0]

IS
~
i

= 1ﬂf\> display_on

an=4'b1110

X

bed_in[3] = 0; bed_in[2:0] = bad_bit[3:1]; 4

u_hdcde

hamming7_4_decode

bad_bit[3:1]

SW 3
h_code[7:1] Led
7 ’ decode[4:1] 4
4

As usual, the Quartus settings file (lab4_top.qsf) contains the mapping and signal naming
between the pins on the FPGA and the signal names used at the top level i/o wrapper
(DE10_LITE_Temple_Top.sv). Do not modify these files for this lab.

4 8/12/2022

Design steps:

a) The testbench file, tb_hamming7 4 decode.txt, is provided to you based on the error
free truth table for the Hamming code as per Table 1, and expanded to include the error
codes as well as the output bad_bit signals. Look over this text file, but do not change it.
Note that because there are 7 input signals, there are 2’ = 128 possible combinations of
this input pattern. (FY1, this was generated using a C program to implement the
specification.)

b) Complete the design for hamming7 4 decode based on this specification (equations on
page 2), including the bad_bit output signal.

c) Complete the design for lab4_decoder that instantiates this module and the seven-
segment decoder into a single module and appropriately connects to the i/0's.

Simulation/Verification

There are two testbench wrappers — one for each of the two above modules:
tb_hamming7_4 decode.sv and tb_lab4_decoder.sv. Each of these has a text file (.txt) to
provide the test vector data. Your seven-segment decoder was tested in Lab 3.

There are two simulation command files (right-click each of the *.m_sim files and Run)
associated with the testbenches:

* hamming7_4 decode.m_sim, to simulate and test the Hamming(7-4) decoder
module alone; and
* lab4 decoder.m_sim, to simulate and test the integration of the decoder modules.

Remember to save a screen shot of each simulation log file for your reports. There will be two
different simulation log files you will need.

Use the ved waveform files to help debug your code if it doesn’t pass the simulations.

Synthesis

Generate a binary file as you did in past labs (right-click and Run on: lab4_top.qsf). When
successful, you will generate the file: lab4_top.sof. Copy it to your shared folder to load and
run on your DE10-Lite board.

Insert some known error free codes as defined in the truth table in the Introduction. Then
switch some of the bits, one at a time and see how your display points to the bit (switch) in
error. (Some of these will not be the data bits, but the check bits.)

5 8/12/2022

