
1 7/11/2022

Lab 3A – Connecting to the DE10-Lite Hardware

Introduction
In a previous lab, you designed some simple logical gates and tested the design in hardware. The
hardware connections were done automatically for you in the templates provided. In this lab, you
will learn how these connections are done through the naming of signals in a top-level wrapper.

The mapping of the SystemVerilog top-level signals to the actual hardware device can be a pretty
tedious operation. The mapping is defined in a file called a Quartus Settings File (with a .qsf
extension). There exists extensive documentation on setting up such a file for a particular design.

Fortunately, the board manufacturer (Terasic), along with the tool provider (Altera), provide a
support qsf file from which we can edit this connection information for our particular design. In
this lab, you will be editing this file so that you can correctly connect your design to the
hardware in Lab 3, where you will be designing a seven-segment decoder.

The main design module for Lab 3 is named: lab3_decoder. It will have seven input signals
(eventually connected to seven input switches) and eleven output signals (eventually connected
to the seven-segment display).

In addition to modifying the Quartus Settings File, you will also be enabling the proper i/o
signals within the DE10_LITE_Temple_Top.sv file.

2 7/11/2022

Within the lab directory, there is a file called lab3_top.qsf. This file contains all of the
usable input and output connections on the FPGA defined with respect to their connection to
the peripheral hardware. The signals are grouped by functionality. Consider the following
sections of the file.

johnnori
Highlight

johnnori
Highlight

3 7/11/2022

You can see above that hardware pin A8 is connected to led 0, pin C10 to switch 0, etc. These
pin-signal mappings are defined in the lab3_top.qsf file above.

On the DE10-Lite board, there are 10 switches, numbered 0-9, using signal name sw, which is a
multi-bit or bussed signal. So sw[9] refers to switch number 9, etc.

Note the relationship between the FPGA pin numbers and the SystemVerilog signal names.
Terasic and Altera have taken care of the particulars of the format of this file for us.

It is beyond the scope of this lab and course to delve into the details of this format. However, it is
important to see the connections and the top-level signal names in case you need to change them
in future designs. Most often when you purchase a piece of hardware like this, the vendor will
supply the appropriate support files for the board. So typically you would only have to do some
minor edits of their master file.

A final important note – the format for this file allows for comments. If the first non-space
character in the line is a '#' symbol, the line is treated as a comment – similar to the format of
shell scripts and Python programming. Looking at their master file, all of these useful lines of
code are commented out! That is their default – no pin is connected. So we need to uncomment
the ones being used (by removing the '#' symbol for the signals of interest in your design).

After the pins are connected to the proper signals, these signals must be enabled in the wrapper
file (DE10_LITE_Temple_Top.sv). This is accomplished by defining macros at the top of the
file.

Design Specification and Steps
The goal of this lab is to step through a process to modify a Quartus Settings File that will be
used for Labs 3A and 3. This exercise will teach you how the top-level signals in your designs
are connected to the hardware switches, LEDs, push buttons, etc. In future labs, the qsf files will
be provided to you.

Part A – modifying the qsf file

Open the lab3_top.qsf file in VS Code.

Proceed to uncomment (i.e., remove the '#' symbol) the lines for the following signals:
• All LEDs: ledr[0] through ledr[9] (lines 73-92)
• Switches 0 through 6: sw[0] through sw[6] (lines 95-108)
• Seven-segment displays 0 through 3: hex0 through hex3 (lines 117-180)

4 7/11/2022

Save the file. You should now have a Quartus Settings File for use in Labs 3A and 3.

Part B – editing the top module

Open the top module: DE10_LITE_Temple_Top.sv.

Note how all of the i/o data sets are grouped. Each grouping is bracketed by an `ifdef/`endif
directive. You can read more about these SystemVerilog constructs here. Essentially, this
directive tells the compiler to include this portion of the code if a specific FLAG macro is
defined. For instance, consider the following piece of code.

The LED bus ledr[9:0] will only be defined if the ENABLE_LED macro is included.
Otherwise, the compiler will ignore this segment of the code, which may cause issues if
the design makes use of the LEDs on the DE10-Lite hardware.

In this lab, we need the following signals to be defined:
• All LEDs: define ENABLE_LED
• Switches 0 through 6: define ENABLE_SW
• Seven-segment displays 0 through 3: define ENABLE_HEX0, ENABLE_HEX1,

ENABLE_HEX2, ENABLE_HEX3

These macros can be defined at the top of the wrapper file. Simply use the `define directive as such:

`define ENABLE_LED

Make sure to only place one macro per line. You can begin defining your macros on line 29 as
instructed by the comments in the file.

Now, create a simple design inside the top-level module. Connect the seven input switches to the
first seven LEDs. This can be done with a single assign statement.

https://www.chipverify.com/verilog/verilog-ifdef-conditional-compilation

5 7/11/2022

Simulation/Verification
Because the design is so simple – connecting six inputs to six outputs, there is no simulation
necessary.

Synthesis
Make sure all of your files are saved. Run the synthesis (i.e., right-click and run:
lab3_top.qsf).

Download your binary file (lab3_top.sof) and test your design.

Preparation for Lab 3
Open DE10_LITE_Temeple_Top.sv and comment out your Lab 3A connections. Inside this
top module, instantiate the module: lab3_decoder. Previously, when this lab used the Basys3
board, each display had its own anode that had to be toggled individually. Additionally,
segments between displays shared common cathodes. Thus, the same pattern would show on all
four displays at once. According to the DE10-Lite User Manual, each segment of each display
can be toggled separately, thus eliminating the need for an "anode" decoder. This is why we had
to enable all eight signals (seven segments plus a decimal point) for each display (e.g., hex0[0] -
hex0[7], hex1[0] - hex1[7], hex2[0] - hex2[7], hex3[0] - hex3[7]). However, to keep the code
consistent, we will still create an anode decoder module so that we can select which display we
want turned on. To facilitate compatibility with the DE10-Lite board, the muxed_display
module is already instantiated for you.

In order to complete the instantiation, include the lab3_decoder module. Within the
instantiation, connect the switches as the inputs. Two internal signals have already been
declared: an[3:0] and cathode[6:0]. These will be the outputs for the lab3_decoder module.
Simply insert your instantiation where the comment reads: "instantiate top level design here".

lab3_decoder u_top (.sw(sw), .an(an), .cathode(cathode));

You will not see any errors you make in this instantiation until you synthesize the design in Lab
3. However, you can check for the correct syntax of your edits by running lab3_top.qsf.

