
1 8/12/2022

Lab 3 – Four-bit, Seven-Segment Decoder

Introduction
As discussed in the textbook, seven segment displays are popular display elements used in many
appliance and clock designs. In this lab, you will be designing a decoder that converts a 4-bit
hexadecimal code to a corresponding 7-bit code to drive such displays. In addition, the design
will have a display_on (enable) bit, that when active high turns on the display, and when low the
display is off. In this design only one of the display digits will be driven at a time. The 4-bit
hexadecimal code will be selected using four of the switches (0-3); the display_on will be from
an additional switch (6); finally, two additional switches (4-5) will be used to select which one of
the four display digits is active.

For your DE10-Lite board, the connection details are found in the User Manual. [The document
is available on Canvas.] The following figure is taken from this document.

2 8/12/2022

As described, each segment of each display has a dedicated signal. For instance, the topmost
segment of the first display is hex0[0] whereas the topmost segment of the third display is
hex2[0]. This was not the case previously with the Basys3 hardware. On that board, all four of
the displays shared the same individual cathode lines. Thus, the topmost segments of all the
displays were either on or off at the same time. To maintain consistency, you will be creating a
decoder that would function on either board. The muxed_display module is created for you so
that this design will work on the DE10-Lite board.

If you are interested in how the seven-segment displays worked on the Basys3 board, I highly
encourage you to read the first few pages from the previous manual for this lab: lab3_v14.pdf.
The Basys3 manual provides great detail on how seven-segment displays are wired and how
current sinks are used in their design.

In addition to the seven segment decoder, you will be designing a second decoder that selects
the display used based on two of the switches (the anode decoder).

3 8/12/2022

Detailed Specification:
Seven input switches are to determine the output condition of the four seven-segment display
digits. Switch six (sw[6]) is the display enable function. When off, the display is off; when on,
the display is on. Switches five and four (sw[5:4]) control which digit is displayed as per the
table below. The anode signals are active low, meaning that a signal of "0" must be supplied to
turn on that specific display.

sw[5] sw[4] Digit Displayed 4-bit Anode code: AN3-0
= anode[3:0]

0 0 0
0 1 1
1 0 2
1 1 3

Switches three through zero (sw[3:0]) control the digit that is to be displayed as per the table
below. You will have to determine the bit pattern for each hexadecimal digit by completing the
table below. Note the patterns in Figure 17 above for digits 0-9.

sw[3:0] Digit Displayed 7-bit Segment code: gfedcba
= seg_out[6:0]

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 a
1011 b
1100 c
1101 d
1110 e
1111 f

4 8/12/2022

For the six hexadecimal digits a-f use the segment patterns:

 _ _ _ _
 | | | _| |_ |_
 |_| |_| |_ |_| |_ |

Design/Modules
In this design you will need to complete the design of three separate modules.

 The main module that contains the basic design for driving the seven cathodes is
svn_seg_decoder. This module decodes the 4 input bits (binary data represented by 4
switch selections) to 7 output bits (cathodes) of the seven-segment decoder.

 A second module called anode_decoder, is for decoding the anode signals from the 2
input switches and selects one of the 4 anode signals of the seven-segment decoder.

 A third module, lab3_decoder, instantiates these two modules into a single module that is
connected to the i/o wrapper.

The block diagram for the each of the modules is shown below. Note the module names and
the signal names. Skeleton files for these modules are provided in your design path.

5 8/12/2022

Module lab3_decoder is then wrapped by tb_lab3_decoder for simulation, and
DE10_LITE_Temple_Top for synthesis. No edits are needed for these modules. You can also
open the Quartus settings file (lab3_top.qsf) and see the correspondence and signal naming
between the pins on the FPGA and the signal names used at the top level i/o wrapper
(DE10_LITE_Temple_Top.sv). You modified these files in the previous lab.

Summary of design steps:

a) Complete the truth table for the 4-bit anode signals for the 4 possible switch inputs: 00,
01, 10, 11. Keep in mind that this 4-bit signal is active low. Edit the text file,
tb_anode_decoder.txt based on your truth table.

b) Complete the truth table for the 7-bit segment (cathode) signals for the 16 possible data
inputs: 0000 – 1111. Keep in mind that this 7-bit signal is active low. Edit the text file,
tb_svn_seg_decoder.txt based on this truth table. The format for the text files is provided
in the comments at the head of the files. Complete these two files before doing the
simulations.

c) Complete the design for svn_seg_decoder based on this specification, including the 1-bit
display_on signal.

d) Complete the design for anode_decoder for the anode signals for the two switch inputs.
e) Complete the design for lab3_decoder that instantiates these two modules into a single

module.

6 8/12/2022

Simulation/Verification
There are three testbench wrappers: one for each of the three above modules:
tb_svn_seg_decoder.sv, tb_anode_decoder.sv, and tb_lab3_decoder.sv. The first two of these
read the text files (.txt) containing your truth table specifications. A complete testbench is
provided for the third module: lab3_decoder. This testbench applies 128 different test vectors to
your design – exercising all combinations of the 7 switches.

There are three simulation command files (right click each of the *.m_sim files and Run)
associated with each of the testbenches:

 svn_seg_decoder.m_sim, to simulate and test the seven-segment decoder module
alone;

 anode_decoder.m_sim, to simulate and test the anode decoder alone; and
 lab3_decoder.m_sim, to simulate and test the integration of both modules into the

lab3 decoder.
Remember to save a screen shot of each simulation log file for your reports. There will be three
different simulation log files you will need.

There three different vcd waveform files that are generated from each simulation.

 tb_svn_seg_decoder.vcd
 tb_anode_decoder.vcd
 tb_lab3_decoder.vcd

Download and view these with WaveTrace as needed to debug your design.

As part of your lab report, show a timing diagram with all of your signals inside of the module
lab3_decoder (vcd file) (instance name: uut) as shown below. Also demonstrate that you can
change them from their default hexadecimal representation to binary as also shown below.

7 8/12/2022

Be sure your simulation passes all three simulations before creating hardware.

Synthesis
Generate a binary file as you did in past labs (right-click and Run: lab3_top.qsf). When
successful, you will generate the file: lab3_top.sof. Copy it to your shared folder to load
and run on your DE10-Lite board. As you test your design in your hardware, remember:
Switch 7 is the display on switch – be sure to turn that switch on.

