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Lab 2A – Introduction to Testbenches 

Introduction 
A testbench is an important component in digital design. When developing a new or evolving 
design, an organization is typically divided into two functional units: a design team and a test/
verification team. The design team works on creating the actual product design. The test/
verification team focuses on: a) how to verify the product design meets the intended 
specification and b) how to test the product during manufacturing. In this lab, you will be 
introduced into this verification process. 

Interestingly, both teams start with the same specification. In a simple design block, a complete 
specification can be based on an equation or truth table. By complete, I mean that the values of 
all output signals are defined for all possible combinations of input signals. Let's take as an 
example a three-input AND gate. We know what the output signal should be for all possibilities 
of the three inputs. 

For simple designs, this process is fairly straightforward as will be shown in this lab. We need to 
apply all possible inputs to our design, and observe the outputs. We could do the output checking 
by hand, that is, run a simulation that applies these inputs to our design, and check the output for 
each input possibility. However, this can be tedious and error-prone. A better solution is to use 
the design specification to store the expected outputs – and compare them automatically. We 
will then encapsulate or instantiate our design inside of this testbench. This style of testbench is 
called a self-checking testbench because it automatically compares each output signal with an 
expected value. 

The importance of such a testbench is: 

 The functionality of the design goes through another set of eyes. That is, the verification
team does not look at the design team's work, but rather the specification. So one has two
independent views of the same design that in the end must match. This reduces functional
design errors in large projects.

 As a design evolves (with a fixed specification), the product design team may go through
several iterations to minimize power, increase speed, etc. – while the basic functional
specification remains unchanged. The team can quickly verify that their changes have not
broken the functionality of the product by reusing this golden self-checking testbench (or
set of testbenches for a complex design).
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In this lab, you will be provided a template for developing a self-checking testbench for simple 
designs that are specified with truth tables. You will then modify it to use for checking your 
design for a following lab.  

Design/Module 
Verilog/SystemVerilog is a language that can be used for both design and verification. While it 
is a Hardware Description Language (HDL) not all of the language constructs translate into 
hardware. In building this testbench we will use several constructs that cannot map into 
hardware. Remember, the testbench is an abstract design to apply stimuli to the inputs of a real 
design and compare the outputs from this design to their expected values. It is not part of the 
hardware implementation. 

The testbench is the top module of a simulation. Think of it as the main function in C 
programming. Because the design modules, testbenches, and supporting text files are related, we 
will use a consistent file naming style for them. Let's assume we are going to test a design 
module (and_3_inputs) for a three-input AND gate hardware design as given here: 

module and_3_inputs (output logic f, input logic a, b, c); 
// this is the design to test 

 assign f = a & b & c; 
endmodule 

This design will in fact synthesize into a three-input AND gate and can be loaded into the FPGA 
hardware. To simulate this design, we need to instantiate this design inside of a testbench. For 
our design style, let's call the top level testbench the same module name, but with a tb_ prefix. 

module tb_and_3_inputs (); // this is the top level testbench wrapper 
… 

// instantiate the unit under test (instance name uut) 
and_3_inputs uut (.f(), .a(), .b(), .c()); 

… 
endmodule 

Note a) there are no inputs and outputs at the top level for simulation and b) that the input and 
output connections to the uut are left empty for now. 

Before continuing with the Verilog, let's define the specification for the example three-input 
AND gate in a truth table using multi-bit notation (start with index 0) for both the input and 
output signals, even though the output is only one bit wide. (This implementation will be useful 
when we have multiple output bits.) 
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data_in[2:0] expected_out[0:0] 
3'b000 1'b0 
3'b001 1'b0 
3'b010 1'b0 
3'b011 1'b0 
3'b100 1'b0 
3'b101 1'b0 
3'b110 1'b0 
3'b111 1'b1 

Now let's put this truth table into a text file that we will later read from the testbench. We will 
use a .txt extension for the file and use the same basename as the testbench for the design. So 
here would be the contents of tb_and_3_inputs.txt: 

000_0 
001_0 
010_0 
011_0 
100_0 
101_0 
110_0 
111_1 

Note that Verilog allows using the underscore to separate data patterns to make them more 
readable. Thus, when reading this file, the underscores will be ignored. Note also that it has 
eight rows (23) and four columns. 

Now back to the Verilog code. We will assume that we can read all of this data into some 
variable, and put each row pattern (called a test vector) onto the data_in and expected_out 
signals, which we declare below. 

module tb_and_3_inputs (); // this is the top level testbench wrapper 
… 

logic [2:0] data_in; 
logic [0:0] expected_out; 
logic [0:0] sim_out; // the simulated output; 

// instantiate the unit under test 
and_3_inputs uut (.f(sim_out), .a(data_in[2]), .b(data_in[1]), 

.c(data_in[0])); 
… 
endmodule 
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I have also declared signal: sim_out to hold the simulated output of the unit under test. Even 
though it is one bit wide in this example, I have used a multi-bit notation so it is easily reusable. 
I have also connected the data_in signals to the inputs of the unit under test. 

Instantiation of the unit under test is a very important concept to understand. Remember, Verilog 
is a language that describes hardware. So instantiation is a parallel operation. Think of the uut as 
a piece of physical hardware – you change the inputs and the outputs change. Because this is 
parallel, this instantiation does not have any restrictions on where it needs to be placed within the 
module. However, we must declare our signals at the top of the testbench, so it cannot be placed 
before these internal signals are declared. 

Next let's add some other necessary signals shown below. 

 We need a two-dimensional signal called test_vectors. We will read the data from the
text file into this array. It will be the number of columns wide by the number of rows
deep. Note, Verilog has this particular syntax for a two-dimensional signal that is a little
different than other languages.

 We need a variable i to count the row number as we loop through the rows (also referred
to as the index).

 Finally we need a variable mm_count to count the total number of mismatches when
applying all of the patterns to the unit under test.

Note test_vectors is type logic (one bit per index); i and mm_count are of type integer (32 or 
64 bits). 

The resulting declarations for this example AND design would be: 

logic [3:0] test_vectors [0:7]; // 8 rows by 4 columns 
integer i; // variable for loop index 
integer mm_count; // variable to hold the mismatch count 

Another useful coding style is to make use of the Verilog parameter statement. This statement 
defines constant value variables that will be defined in the first pass through the code by the 
simulator. They are similar to the #define statement in the C language. They help make the 
code easier to maintain and reduce errors. A typical coding style for such constant parameters is 
that they are upper case, as a reminder that they are constants, not signals, and should not be 
reassigned later in the code. 

Let's add a few parameters to this design, and with appropriate substitutions to the indices. 
(Reminder, we count from zero.) 

parameter ROWS=8, INPUTS=3, OUTPUTS=1; 
logic [INPUTS-1:0] data_in; 
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logic [OUTPUTS-1:0] expected_out; 
logic [OUTPUTS-1:0] sim_out; // the simulated output; 
logic [INPUTS+OUTPUTS-1:0] test_vectors [0:ROWS-1]; 
integer i; // variable for loop index 
integer mm_count; // variable to hold the mismatch count 

You can see the advantage of using parameters here. When reusing this template one only has 
to edit this single line for designs with different input/output dimensions. 

So now we have declared all of our signals, and instantiated our unit under test. The result so 
far: 

module tb_and_3_inputs (); // this is the top level testbench wrapper 

parameter ROWS=8, INPUTS=3, OUTPUTS=1; 
logic [INPUTS-1:0] data_in; 
logic [OUTPUTS-1:0] expected_out; 
logic [OUTPUTS-1:0] sim_out; // the simulated output; 
logic [INPUTS+OUTPUTS-1:0] test_vectors [0:ROWS-1]; 
integer i; // variable for loop index 
integer mm_count; // variable to hold the mismatch count 

// instantiate the unit under test 
and_3_inputs uut (.f(f), .a(data_in[2]), .b(data_in[1]), 

.c(data_in[0])); 

// insert the test loop below 
… 

endmodule 

Next we have to read the text file and loop through the vectors comparing the outputs from the 
unit under test to the expected values. Verilog has a construct for doing this that you will learn 
about in the lectures. It is an initial block, i.e., a block of statements that will be executed 
sequentially. This whole block is a parallel construct. But the statements inside of it will be 
executed sequentially – which allows us to have looping functions, conditional statements, etc. 

A simulator looks for initial blocks at the beginning of the simulation and starts executing them 
at simulation time zero. The simulator steps through the statements logically until it reaches the 
end of the block. This should become clearer as we work through this example. Let's set up this 
initial block: 

initial begin 
$dumpfile("tb_and_3_inputs.vcd"); 
$dumpvars(); 

mm_count = 0;  // zero mismatch count 
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// read all of the test vectors from a file into 
// array: test_vectors 
$readmemb("tb_and_3_inputs.txt", test_vectors); 

// loop over all of the rows using a for loop 
for (i=0; i<ROWS; i=i+1) begin 
… 
end 

end 

The first two lines of code in the initial block use Verilog functions: $dumpfile and $dumpvars. 
These tell the simulator to write all of the signals from this simulation to a vcd file (Value 
Change Dump) called: tb_and_3_inputs.vcd. After the simulation is complete, these signals 
can be viewed with a waveform viewer to debug the design if necessary. For large designs and/
or long simulations this file can get quite large. There are ways to limit the number of signals 
stored by adding arguments to $dumpvars. We will discuss this in later labs as necessary. 

After the mismatch count variable is initialized to zero, you see a new Verilog function: 
$readmemb. It reads the data from the text file into the test vector variable – both the file name 
and variable defined in $readmemb’s arguments. Note this reads the whole file in one function 
call – not line by line. That is why the array has to be large enough to handle all of the columns 
and rows. 

I'm sure you recognize the for loop structure which is similar to that of other languages. 

Now let's fill in the details of the for loop, remembering that in each loop we want to process 
one test vector (line of data in the text file). 

Here are the details inside the for loop: 

for (i=0; i<ROWS; i=i+1) begin 
// read each vector (row) into the input data and 
// expected output variables – at this time the 
// data_in is applied to the unit under test 
{data_in, expected_out} = test_vectors [i]; 

#10;    // artificial wait 10 ns for inputs to settle 
// now compare the output from uut to expected value 
if (sim_out !== expected_out) begin 

// display mismatch 
 $display("Mismatch--loop index i: %d; input: %b, expected: 

%b, received: %b", 
i, data_in, expected_out, sim_out); 

 mm_count = mm_count + 1;  // increment mismatch count 

end 
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#10;  // add 10 ns for symmetry 
end 

Reminder: the {…} is a concatenation operator. Thus, {data_in, expected_out} has a bit width 
equal to the number of columns – which is the width of test_vectors. You can also see how each 
column bit is mapped to each input and output bit with this statement. 

I put in an artificial delay of 10 ns to imagine a natural gate delay from the inputs being applied 
to the uut, until the output results would settle. The #10; actually means delay 10 simulation 
units. What is a simulation unit? This is typically defined in the first line of the file: 

`timescale 1ns / 1ps 

These two numbers are the time units and precision of the simulation, respectively. 

Then the output from the uut is compared to the expected value (because of the parallel 
operation of the instantiation previously discussed). If there is not a perfect match the 
statements inside the if statement are executed. 

You can see that the Verilog $display function is somewhat similar to a C language printf 
statement. 

The mismatch count variable is incremented, another 10 ns delay is added for symmetry, and 
then the loop continues. 

We just need a few more statements to finish up the testbench as shown below. 

// tell designer we're done with the simulation 
if (mm_count == 0) begin 
 $display("Simulation complete - no mismatches!!!"); 
end else begin 

$display("Simulation complete - %d mismatches!!!", 
mm_count); 

end 
$finish; 

After completing the loop through all of the test vectors, the mismatch count variable is tested. 
An appropriate message is sent based on this condition. Then the simulation is formally 
completed by calling the $finish function. This basically cleans things up before exiting. 

Putting it all together, we have: 

`timescale 1ns / 1ps 
module tb_and_3_inputs (); // this is the top level testbench wrapper 

parameter ROWS=8, INPUTS=3, OUTPUTS=1; 
logic [INPUTS-1:0] data_in; 



8 6/29/2022 

logic [OUTPUTS-1:0] expected_out; 
logic [OUTPUTS-1:0] sim_out; // the simulated output; 
logic [INPUTS+OUTPUTS-1:0] test_vectors [0:ROWS-1]; 
integer i; // variable for loop index 
integer mm_count; // variable to hold the mismatch count 

// instantiate the unit under test 
and_3_inputs uut (.f(sim_out), .a(data_in[2]), .b(data_in[1]), 

.c(data_in[0])); 

initial begin 
$dumpfile("tb_and_3_inputs.vcd"); 
$dumpvars(); 

mm_count = 0;  // zero mismatch count 

// read all of the test vectors from a file into 
// array: test_vectors 
$readmemb("tb_and_3_inputs.txt", test_vectors); 

for (i=0; i<ROWS; i=i+1) begin 
// read each vector (row) into the input data and 
// expected output variables – at this time the 
// data_in is applied to the unit under test 
{data_in, expected_out} = test_vectors [i]; 

#10;    // artificial wait 10 ns for inputs to settle 
// now compare the output from uut to expected value 
if (sim_out !== expected_out) begin 

// display mismatch 
 $display("Mismatch--loop index i: %d; input: %b, expected: 

%b, received: %b", 
i, data_in, expected_out, sim_out); 

mm_count = mm_count + 1;  // increment mismatch count 

end // end of if 
#10;  // add 10 ns for symmetry 

end // end of for loop 

// tell designer we're done with the simulation 
if (mm_count == 0) begin 
 $display("Simulation complete - no mismatches!!!"); 
end else begin 

$display("Simulation complete - %d mismatches!!!", 
mm_count); 

end 
 $finish; 
end // end of initial block 

endmodule 
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The highlighted areas are edits that you would need to change for connecting to a similar 
design. Otherwise, the rest of the code can be unchanged. 

Simulation/Verification 
You will be given a testbench template (tb_template.sv) that follows the approach described 
above. You need to copy and modify it. The truth table specification and top level module 
definition for Lab 2 are provided below. The details of the design are provided in that write up. 

d[4:1] e[7:1] 
4'b0000 7'b0000000 
4'b0001 7'b0000111 
4'b0010 7'b0011001 
4'b0011 7'b0011110 
4'b0100 7'b0101010 
4'b0101 7'b0101101 
4'b0110 7'b0110011 
4'b0111 7'b0110100 
4'b1000 7'b1001011 
4'b1001 7'b1001100 
4'b1010 7'b1010010 
4'b1011 7'b1010101 
4'b1100 7'b1100001 
4'b1101 7'b1100110 
4'b1110 7'b1111000 
4'b1111 7'b1111111 

module hamming7_4_encode(output logic [7:1] e, input logic [4:1] d); 
… 
endmodule 

Create the testbench module for this design (tb_hamming7_4_encode.sv) based on 
tb_template.sv. Here are the steps: 

 Open tb_template.sv in one window.
 Open a new file in another window: tb_hamming7_4_encode.sv
 Copy the template code into the hamming code and edit the appropriate areas as 

discussed previously in this document.
 You can test the syntax of your entry by running tb_hamming7_4_encode.m_sim.

You will also need to create a text file (tb_hamming7_4_encode.txt) that contains the 
data from the truth table above. 
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When you have these two files completed, you test your simulation operation with this 
testbench. Right-click on hamming7_4_encode.m_sim and select Run. The simulation 
should start with the testbench applying the stimuli (16 different test vectors from your txt 
file) to the Hamming encoder design. However, since you will be doing this design in next 
week's lab, the design is empty and you should see the following mismatches (the received 
data is unknown denoted by x's): 

Mismatch--loop index i:  0; input: 0000, expected: 0000000, received: xxxxxxx 
Mismatch--loop index i:  1; input: 0001, expected: 0000111, received: xxxxxxx 
Mismatch--loop index i:  2; input: 0010, expected: 0011001, received: xxxxxxx 
Mismatch--loop index i:  3; input: 0011, expected: 0011110, received: xxxxxxx 
Mismatch--loop index i:  4; input: 0100, expected: 0101010, received: xxxxxxx 
Mismatch--loop index i:  5; input: 0101, expected: 0101101, received: xxxxxxx 
Mismatch--loop index i:  6; input: 0110, expected: 0110011, received: xxxxxxx 
Mismatch--loop index i:  7; input: 0111, expected: 0110100, received: xxxxxxx 
Mismatch--loop index i:  8; input: 1000, expected: 1001011, received: xxxxxxx 
Mismatch--loop index i:  9; input: 1001, expected: 1001100, received: xxxxxxx 
Mismatch--loop index i:  10; input: 1010, expected: 1010010, received: xxxxxxx 
Mismatch--loop index i:  11; input: 1011, expected: 1010101, received: xxxxxxx 
Mismatch--loop index i:  12; input: 1100, expected: 1100001, received: xxxxxxx 
Mismatch--loop index i:  13; input: 1101, expected: 1100110, received: xxxxxxx 
Mismatch--loop index i:  14; input: 1110, expected: 1111000, received: xxxxxxx 
Mismatch--loop index i:  15; input: 1111, expected: 1111111, received: xxxxxxx 
Simulation complete -    16 mismatches!!! 

You now have completed the design of the testbench for the Hamming encoder. You will use 
this next week to test that design. 

As a reference, the and_3_inputs files are included in the lab2 directory. If you like you can run 
this simulation also (and_3_inputs.m_sim).

Viewing the waveform 
As described earlier, the vcd file contains the signal data from the simulation. This is very useful if you 
need to debug your design. You can view this signal data (i.e., timing diagram) using the WaveTrace 
extension in VS Code that you downloaded during Lab 0. Your lab instructor will demonstrate using 
WaveTrace. WaveTrace has a very similar interface to the waveform viewer explained below.

[Optional]

If WaveTrace is not setup, there are alternative options. I outline the steps below for using the online 
waveform viewer: EPWave. There are other waveform viewers, a popular freeware one is gtkwave. 

Download the vcd file to your local PC 
Locate the vcd file of interest. In this example, it would be tb_hamming7_4_encode.vcd. Do NOT 
open this file. For some designs, it will be large and may lock up your system as it tries to read and 
display it into a window. Right-click on the file and select: Download. 

Open EPWave and upload the file from your local PC 
Go to: https://www.edaplayground.com/w/home (you may want to bookmark this location). You may 
need to create a free account with the sponsoring company (Doulos). 
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Select Upload from the dropdown box in the upper left. Then select the Choose File button to get your 
local vcd file. 

Select the signals to view 
Select the Get Signals under the Upload box. You will be presented with a window that describes the 
hierarchy of your design. 

By highlighting .uut (instance name of the unit under test – hamming7_4_encode), the Signal Name box 
is populated with the signals inside that instance. Since this is a small design, you can select Append All 
and they will appear in the wave viewer. 

The default for displaying a multi-bit signal is hexadecimal format, you can change this to binary by 
selecting the Radix dropdown. The above figure is a waveform of the completed design, which you will 
have done next week. Note a few things here. All of the signals are changing every 20 ns. This is 
exactly what was defined inside the testbench: two 10 ns delays inside the for loop. There are 16 
different values for the signal d inside the Hamming design. And you see all of them defined here. The 
signal e is 
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the output of the completed Hamming design. You can see that it matches the expected values in the 
truth table above. The other p signals are internal parity signals. 

If you wanted to, you could add the internal signals from the top-level testbench (Get Signals button). 
This does not have an instance name, but you can see from the image below that all of the internal 
signals are available. These signals are typically not as informative in debugging the design. However, 
if you have mismatches, looking at when mm_count changes will point you to the failing pattern. 

Synthesis 
There is no synthesis for this lab. 

I emphasize here the other important aspect of creating a self-checking simulation testbench. If 
your design passes simulation, it is very, very likely that your synthesized design (in hardware) 
will operate to the specification. I sometimes hear from students having trouble debugging their 
designs. When asked if their design passed simulation: “No it had mismatches, but I thought I 
would try and check it in the hardware anyway.” I can guarantee you that it will not work in the 
hardware. While you may be able to load your flawed design into the hardware – it will behave 
with the same design errors that it revealed in the mismatches of the simulation. 

So follow this rule: If your design does not pass simulation, don’t waste your time synthesizing 
it and loading it into the hardware. The mismatches in the specification will not get magically 
corrected from this step. 
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Finally, if you follow this path and think you can debug the problem in hardware, it will be very 
difficult. The main reason is that you have limited visibility into the FPGA. So it is much easier 
to debug your design errors during this simulation process where you have complete visibility of 
any signal in the design at any time in the simulation. So debugging is much easier with a self-
checking testbench – that basically points you to the problem patterns. For our purposes in this 
course, a passing simulation almost guarantees that your design will operate correctly in 
hardware. 




