Lab 2 — Encoder Design
Four bit, Error Correction Code (ECC) using Hamming(7,4) Code

Introduction

As discussed in the lectures, videos, and textbook, parity is used as the simplest form of error
detection. An expansion of this concept was developed by Richard Hamming at Bell Laboratories
in 1950. His basic algorithm can detect all single- and two-bit errors, and identify to correct a
single-bit error. The algorithm you will be using in this lab is called the Hamming(7,4) code. You
will be adding 3 code bits to a 4-bit data word. The 3 code bits are basically parity bits of
selected bits of the data word. The basic algorithm is provided below. The theory behind it is
available from many sources and will not be covered here (see Canvas for posted resources).

The input to your design will be four data bits (d[4:1]). The output (e[7:1]) will be a seven-bit
word as described in the truth table below. [Note that we are using indices that start from 1, not 0.
This is because most all references of Hamming's implementation begin index counting with 1,
not 0 — so to avoid confusion we follow this convention for this design.]

d[4:1] e[7:1]
450000 7'b0000000
450001 7'b0000111
40010 7'b0011001
40011 7'b0011110
40100 7'b0101010
410101 7'b0101101
4'b0110 7'b0110011
40111 7'b0110100
41000 7'b1001011
451001 7'b1001100
41010 7'b1010010
451011 7'b1010101
4'b1100 7'b1100001
41101 7'b1100110
41110 7'b1111000
4v1111 7b1111111

You are provided a skeleton design in your lab2 directory path. This directory will contain the
basic files from which you will build the design. They are described below.

1 6/29/2022



Design/Module

The block diagram for the design is given here. Note the module name and the internal signal
names.

hamming7_4_encode

d[4:1] e[7:1]
4 7

The implementation algorithm is described below.

The three code bits are:

pl = d[1l] xor d[2] xor d[4]

p2 d[1l] xor d[3] xor d[4]

p3 d[2] xor d[3] xor d[4]

The encoded multi-bit output signal, e, has these three code bits interleaved with the data bits,
such that:

e[7:1] = {d[4], d[3], d[2], p3, d[1], p2, pl}
The result of this algorithm exactly matches the truth table above.

Open the module, hamming7 4 encode.sv. Create your Verilog design that meets the above
specifications. For more information as to how to write Verilog assign statements from Boolean
equations, refer to section 2.1.3 in the textbook by Ashenden.

2 6/29/2022



Simulation/Verification

A self-checking testbench file/module has been provided called tb_hamming7 4 encode.sv.
Open the file and look it over — there are no edits required in this file. You will note that besides
instantiating your hamming7 4 encode design, it also reads a text file,
tb_hamming7 4 encode.txt, and inside a for loop it applies the input stimuli and compares
expected output values to those generated by your design. A block diagram of this process is
provided below. You can also open the text file and observe the format of the data that represents
that in the truth table above.

tb_hamming7_4 encode

hamming7_4_encode

d[4:1] e[7:1] L
4 7

tb_hamming7_4 encode.txt

Run your simulation, check for mismatches, and check the text output and timing diagram.
Correct your design as needed.

Synthesis

When your simulation runs with no mismatches, you can then go through the synthesis steps and
binary file generation process. If you want to see how the i/o0 wrapper module instantiates your
design module, you can open the file: DE10_LITE Temple Top.sv. Note how the switches
and LED are connected to your design: hamming7 4 encode. It is illustrated graphically
below:

3 6/29/2022



DE10-Lite Board — i/o defined in lab2_top.qgsf file
DE10_LITE_Temple_Top.sv

hamming7_4 encode

sw[3:0] led[6:0]
d[4:1] e[7:1]
4 7

You can also look over the signal mappings in lab2_top.qsf. This was copied from a file from
Terasic and edited to meet our needs. It describes how the Verilog top-level signals are
mapped to the FPGA pins for the DE10-Lite board.

Finally, generate a binary file as you did in Lab 1 (right-click: lab2_top.qsf). For this lab, the
generated file will be called: lab2_top.sof, in the "output files" directory.

As shown in the above figure, the lower 4 switches will select the input data pattern and the
lower 7 LED's will represent the Hamming output code. Verify that your code is working
properly by comparing the LED outputs of the sixteen possible switch inputs from the truth
table provided.

4 6/29/2022





