
1 6/29/2022 

Lab 2 – Encoder Design 
Four bit, Error Correction Code (ECC) using Hamming(7,4) Code 

Introduction 
As discussed in the lectures, videos, and textbook, parity is used as the simplest form of error 
detection. An expansion of this concept was developed by Richard Hamming at Bell Laboratories 
in 1950. His basic algorithm can detect all single- and two-bit errors, and identify to correct a 
single-bit error. The algorithm you will be using in this lab is called the Hamming(7,4) code. You 
will be adding 3 code bits to a 4-bit data word. The 3 code bits are basically parity bits of 
selected bits of the data word. The basic algorithm is provided below. The theory behind it is 
available from many sources and will not be covered here (see Canvas for posted resources).

The input to your design will be four data bits (d[4:1]). The output (e[7:1]) will be a seven-bit 
word as described in the truth table below. [Note that we are using indices that start from 1, not 0. 
This is because most all references of Hamming's implementation begin index counting with 1, 
not 0 – so to avoid confusion we follow this convention for this design.]

d[4:1] e[7:1] 
4'b0000 7'b0000000 
4'b0001 7'b0000111 
4'b0010 7'b0011001 
4'b0011 7'b0011110 
4'b0100 7'b0101010 
4'b0101 7'b0101101 
4'b0110 7'b0110011 
4'b0111 7'b0110100 
4'b1000 7'b1001011 
4'b1001 7'b1001100 
4'b1010 7'b1010010 
4'b1011 7'b1010101 
4'b1100 7'b1100001 
4'b1101 7'b1100110 
4'b1110 7'b1111000 
4'b1111 7'b1111111 

You are provided a skeleton design in your lab2 directory path. This directory will contain the 
basic files from which you will build the design. They are described below. 



2 6/29/2022 

Design/Module 
The block diagram for the design is given here. Note the module name and the internal signal 
names. 

The implementation algorithm is described below. 

The three code bits are: 

p1 = d[1] xor d[2] xor d[4] 

p2 = d[1] xor d[3] xor d[4] 

p3 = d[2] xor d[3] xor d[4] 

The encoded multi-bit output signal, e, has these three code bits interleaved with the data bits, 
such that: 

e[7:1] = {d[4], d[3], d[2], p3, d[1], p2, p1} 

The result of this algorithm exactly matches the truth table above. 

Open the module, hamming7_4_encode.sv. Create your Verilog design that meets the above 
specifications. For more information as to how to write Verilog assign statements from Boolean 
equations, refer to section 2.1.3 in the textbook by Ashenden. 



3 6/29/2022 

Simulation/Verification 
A self-checking testbench file/module has been provided called tb_hamming7_4_encode.sv. 
Open the file and look it over – there are no edits required in this file. You will note that besides 
instantiating your hamming7_4_encode design, it also reads a text file, 
tb_hamming7_4_encode.txt, and inside a for loop it applies the input stimuli and compares 
expected output values to those generated by your design. A block diagram of this process is 
provided below. You can also open the text file and observe the format of the data that represents 
that in the truth table above. 

Run your simulation, check for mismatches, and check the text output and timing diagram. 
Correct your design as needed. 

Synthesis 
When your simulation runs with no mismatches, you can then go through the synthesis steps and 
binary file generation process. If you want to see how the i/o wrapper module instantiates your 
design module, you can open the file: DE10_LITE_Temple_Top.sv. Note how the switches 
and LED are connected to your design: hamming7_4_encode. It is illustrated graphically 
below: 



4 6/29/2022 

You can also look over the signal mappings in lab2_top.qsf. This was copied from a file from 
Terasic and edited to meet our needs. It describes how the Verilog top-level signals are 
mapped to the FPGA pins for the DE10-Lite board. 

Finally, generate a binary file as you did in Lab 1 (right-click: lab2_top.qsf). For this lab, the 
generated file will be called: lab2_top.sof, in the "output_files" directory.

As shown in the above figure, the lower 4 switches will select the input data pattern and the 
lower 7 LED's will represent the Hamming output code. Verify that your code is working 
properly by comparing the LED outputs of the sixteen possible switch inputs from the truth 
table provided. 




