
ECE 2613 – Digital Design Lab 1 5/30/2022 

Lab 1 – Introduction to Verilog HDL & the Lab Design Flow 

In this lab, you will be introduced to the Verilog Hardware Description Language and the 
design flow we will be using in the labs throughout the course. More specifically, the designs 
you produce and test will be written in the SystemVerilog language, a superset of Verilog that is 
both a Hardware Description Language (HDL) and Hardware Verification Language (HVL). 
Verilog files typically use a ".v" extension, while SystemVerilog files are named with a ".sv" 
extension. All of the design files in this course will have a ".sv" extension. For our purposes, 
Verilog and SystemVerilog have essentially the same functionality, with SystemVerilog 
introducing the useful logic data type. You can read more about the differences between these 
two languages here. 

Setup (Lab 0): AWS Connection and VS Code
Please ensure that you have completed the steps from Lab 0. You should be able to log in (via 
VS Code) to the class AWS server (ece-000) using the ssh keys you generated during Lab 0. All 
of the content for this lab can be found in the following directory: /home/<username>/ece2613/
lab1

Additionally, you should have set up the Oracle VM VirtualBox software during Lab 0. This 
VirtualBox will be used to upload your designs to your hardware. 

Please consult with a lab instructor if the following steps have not been completed:

DE10-Lite Hardware 
The hardware you will be using is DE10-Lite, with which you have been supplied. This board 
contains an FPGA device manufactured by Altera. You have also been supplied with a board-
compatible USB cable, which will be used to load your designs into the board. You can read 
more about the DE10-Lite hardware in the intel_altera_v1.pdf document posted on Canvas.

Basic Design Flow for Lab Exercises 
The Design Flow for the labs in this course consists of the following steps: 

• Enter your design using SystemVerilog HDVL onto the class AWS server
(ece-000) using VS Code

• Simulate your design and verify that it is functionally correct (Intel Quartus
simulation software)

https://www.geeksforgeeks.org/difference-between-verilog-and-systemverilog/


ECE 2613 – Digital Design Lab 2 5/30/2022 

• Create a binary file (*.sof) that can be loaded into the FPGA hardware
• Download the binary file to your local machine and place it in the VirtualBox shared

folder (created during Lab 0)
• Open VirtualBox and load the binary file into the DE10-Lite hardware
• Test your design in hardware and compare with simulation results

The Design 
For this lab, you need to design four different gates by instantiating the appropriate primitives. 
You will use the Verilog gate primitives as discussed in class, videos, and the textbook 
(examples of gate primitives). You may also use assign statements with the proper gate 
operators (examples of gate operators). The four gates for this design are: 

• AND, OR, XOR, NAND

The inputs of the gates will be connected to switches and outputs to LEDs. A block 
diagram/schematic of the gates design (module) is shown below. 

Complete the truth table for the gates in this design.

https://class.ece.uw.edu/cadta/verilog/operators.html
http://www.asic-world.com/verilog/gate1.html


ECE 2613 – Digital Design Lab 3 5/30/2022 

a0, 1, 2 or 3 b0, 1, 2 or 3 f0 f1 f2 f3 

0 0 

0 1 

1 0 

1 1 

Design Entry 
Start by opening the VS Code IDE tool and connect to the class AWS server. Open the lab1 
folder and double click on the gates.sv file. This file contains a skeleton of your design module. 
You are now ready to enter your design. 

Within gates.sv, instantiate each of the four primitive gates, connecting them as shown in the 
above diagram. The instance names are u1, u2, u3 and u4 as shown above. If you chose to 
implement the gates using continuous assign statements, the instance names are not needed. For 
example:

Instantiation implementation: and u1 (f0, a0, b0);

Assignment implementation: assign f0 = a0 & b0;

Save your edited result when you are finished editing your design (Ctrl+S keystroke). 
Remember to save frequently!

Simulation 
This is an operation where the machine checks your design's syntax and if ok, it simulates the 
design – to make sure it matches your design objective or specifications. The design specification 
that is tested for this lab is contained in the truth table above. 

In your hardware implementation, you will be testing this by toggling switches and observing the 
outputs of the LEDs. One way to see if your design meets your specifications before committing 
it to hardware is to provide all of the possible input combinations to the design module in a 
wrapper module, run the simulator, and check by viewing a timing diagram to check that each 
output is correct. Such a wrapper is called a verification testbench. 

A better way is to create a self-checking testbench. This module also knows the expected values 
and compares the simulated outputs to the expected outputs. Then any mismatches are printed to 
the console display. 



In your directory, you are provided a self-checking testbench, called tb_gates.sv. The details of 
this module will be covered in future lectures and labs. For now, it is important that you know 
that it reads a text file called tb_gates.txt. You can open this file and compare it to your truth 
table. These data are read by the self-checking testbench. When you run the simulation 
(tb_gates.sv), each of these inputs will be applied to your design every 20 nsec. If your design 
has errors, there will be mismatches. You must correct these mismatches before continuing to 
the hardware implementation. 

To simulate your design, find the file gates.m_sim in your environment, right-click on it and 
select Run. Observe the terminal at the bottom of the VS Code environment. This will contain 
messages from your simulation. The messages are also copied to a file: tb_gates.log. Open this 
file by double-clicking on it (you may need to refresh the directory navigation pane in VS code).

You are looking for a message: Simulation complete – no mismatches!!! You need to take a 
screenshot of this window to put into your lab report. 

If you have mismatches, the inputs, expected outputs, and your design outputs will be displayed. 
You should be able to find your design error using this information to direct you. 

Synthesis 
This step creates a binary file that must be copied to your local PC, then to VirtualBox, and 
finally loaded into your DE10-Lite board through VirtualBox. The design can then be tested in 
hardware. 

A top-level input/output wrapper is now substituted for the testbench in your design. For all labs, 
it will be called: DE10_LITE_Temple_Top.sv. You can view this file if you like, but do not 
edit it. There is a related file called lab1_top.qsf. To synthesize the design, right-click on this qsf 
file and select Run. This will take a little time for the tool to optimize your design and map it to 
gates for your hardware. 

When it completes without errors, it should have built a binary file called: lab1_top.sof. In order 
to find this file, you must navigate to the "output_files" directory (may need to refresh again). 
This is the file that you need to load into your hardware. If you try to click on this file, VS 
Code will produce a warning since it is a large binary file that should not be viewed in a 
text editor. To download it, right-click on the filename and select Download. The file will be in 
your Downloads path on your local PC. 

Next, copy or move the binary file to the shared folder that you set up in Lab 0. Connect the 
DE10-Lite board to your PC using the provided USB cable. Now, open VirtualBox and select the 
green "Start" button. Sign in using the password "user" in all lowercase. Select "Activities" at the 
top left of the window to open the navigation pane. Select "Files" from the navigation pane. 
Finally, double-click on the lab1_top.sof file to load it into the DE10-Lite board. 
ECE 2613 – Digital Design Lab 4 5/30/2022 



ECE 2613 – Digital Design Lab 5 5/30/2022 

Verify your design by toggling the switches and observing the LEDs. Is the behavior what you 
expect? Does it meet the design specifications? 

Shutting Down/Logging Off 
When you are finished, close all of the open tabs inside the VS Code IDE. Closing VS Code 
will disconnect you from the AWS server. Exit VirtualBox and ensure that the "Power off the 
machine" option is selected.

Troubleshooting
Sometimes, loading designs on the DE10-Lite hardware can be a bit cumbersome. The loading 
process may freeze or an error may be produced that does not allow loading to begin. This is 
usually due to VirtualBox not recognizing the board as plugged into your PC. The following 
steps can help to solve these issues:

• Select "Devices" from the top navigational panel in VirtualBox and observe "USB"
connections. Ensure that "Altera USB-Blaster [0400]" has a check mark next to it. If it
does not, click on it to select it.

• Ensure that the board is plugged into a USB 3.0 port on your PC. If the board is plugged
into a USB 2.0 port, the design may not load. On Windows, you can determine which USB
ports are version 3.0 by navigating to Control Panel -> Device Manager -> Universal
Serial Bus controllers.

• Restart VirtualBox. Connect the DE10-Lite to your PC before starting VirtualBox as this
has sometimes corrected the issues.

• Ensure that the USB bit blaster driver is properly installed. Follow the steps here.

https://www.intel.com/content/www/us/en/programmable/support/support-resources/knowledge-base/component/2017/update-driver-software---usb-blaster--windows-encountered-a-prob.html



